Lecture 1 — August 3, 2015

Call me Mac. I’'m your lecturer for this course.
- Research Area: Software Engineering; Specialty: Refactoring
- Office hours as-posted on the course page, and by appointment

Previously:

Assistant Professor at the University of Texas at San Antonio
- Affiliate Assistant Professor with the University of Washington, Bothell

- Sun Microsystems™ (2000-2003) — (*the makers of Java, now owned by
Oracle) | worked on a parallel debugger called Prism

- Basho Technologies (2013) — | worked on a NoSQL database

- Google Inc (2014) — | used Javascript for front-end programming, and
Java for back-end services

- Independent contractor (various times) — | once worked on porting
Microsoft Word/Office 98 from Windows to the Mac OS (PowerPC days)

Why Study Programming Languages?

* “Language shapes the way we think, and determines what we can
think about.” —Benjamin Whorf

* “Mathematical notation provides perhaps the best-known and best-
developed example of language used consciously as a tool of
thought.” —Kenneth E. Iverson

* Hypothesis: Programming language shapes programming
thought

* Characteristics of a language affect how ideas can be
expressed in the language

CSE130 Summer Session Il, 2015

* Today:

- Course Overview

- Specifying Syntax

 Resources:

- Text: Structure and Interpretation of Computer Programs, by Abelson,
Sussman, and Sussman, Second Edition. A classic! Full text:
https://mitpress.mit.edu/sicp/full-text/book/book.html

- Videos: http://ocw.mit.edu/courses/electrical-
engineering—and-computer-science/6-001-structure—-and-
interpretation-of-computer-programs-spring-2005/video-
lectures/

- Reference: The Scheme Programming Language, Fourth Edition, by
R. Kent Dybvig. Full text: http: //www.scheme.com/tspl4/

Course (Goals

“Free your mind” — Morpheus

You will learn

- several new languages and constructs

- ways to describe and organize computation
- understand the limits of computation

Will learn the anatomy of a PL

Fundamental building blocks of
languages reappear in different guises in
different languages and different settings

Buried inside any extensible system is a
programming language

- Emacs: E-Lisp; Word: WordBasic; Quake:
QuakeC...

- SQL, Renderman, LaTeX...

Primary languages in this
course:

Scheme
Java 8

JavaScript (Node.js/
Harmony)

Prolog and prolog-like
languages

Lambda Calculus

CSE130: Programming Languages

“But I can only show you the door. You're the
one that has to walk through it.” —Morpheus

* Oursite: http://csel30.instructures.org

* Evaluation:
10% — Written Assessments; 4 total, take home, prep for the final

30% — Programming Exercises

30% — Interpreter Project
30% — Final

* First reading:
- Read Sections 1.1 and 1.2 of SICP (pages 1-56)

Academic Integrity

All work must be your own

If you are in doubt about what constitutes plagiarism, please
contact me

If you are aware of academic misconduct, you can either report it
to me or the academic integrity office:

- https://students.ucsd.edu/academics/academic-integrity/reporting.html

- There is also an anonymous Whistleblower Hotline: (877) 319-0265

Because you will be given access to the autograder tool, be
mindful to use this access responsibly

- Echoing the expected outputs without property analyzing the inputs may
make a test “PASS” the autograder, but that is gaming the system

- Any submissions that falsify results like this will get a zero

All submissions will be inspected by the course staff and
automated tools to detect plagiarism and gaming-the-system

Syntax vs. Semantics

c = a + b;

Specitying Syntax

« Grammars are used to precisely specify the syntax of a
language.

- A grammar is a set of rules that describe a language’s syntax
- Tokens (or terminals) are the “alphabet” grammars are made from

- Non-terminals are named entities in the grammar, one step above
tokens

* Rules relate non-terminals to a sequence of tokens and non-
terminals:
non-terminal = [sequence of tokens, non-terminals]
- Where “—" can be pronounced as “can have the form of”

- Sequence can possibly be empty, in which case an “€” is used as a
placeholder

Syntax Example: Java Identifiers

Javaldentifier = Letter

Javaldentifier = Javaldentifier LetterOrDigit
Letter— _|AIBI...1Zlalbl..lz

LetterOrDigit — Letter | Digit
Digt—-0111213141516171819

Things to note:
Input alphabet is ASCI|

A non-terminal can be defined by multiple rules
Rules can be “recursive”

‘A — B|C"is shorthand to mean “A = B” and “A = C”

Syntax Example: Java Identifiers

Javaldentifier = Letter

Javaldentifier = Javaldentifier LetterOrDigit
Letter— _|AIBIl...IZlalbl..lz

LetterOrDigit — Letter| Digit
Digt—=0111213141516171819

12k

10

Syntax Example: Java import statement

Tokens don’t have to be only ASCII.
Instead, we can define grammars from any set of symbols.
An identifier is one kind of token in Java

The tokens are In blue:
ImportDeclaration — import Javaldentifier DottedNames OptStar ;
DottedNames — ¢ | DottedNames . Javaldentifier

OptStar = €1 . *

11

EBNF Example: Java import statement

« Extended Backus-Naur form notation (EBNF):
- [x] means zero or one occurrences of x
- {x } means zero or more occurrences of x

ImportDeclaration = import Javaldentifier {. Javaldentifier}[. *] ;

« Concise, easier to read, less need for €

« Compare to non EBNF version:
ImportDeclaration — import Javaldentifier DottedNames OptStar ;
DottedNames — ¢ | DottedNames . Javaldentifier

OptStar — | . *

12

