
1

• Call me Mac. I’m your lecturer for this course.
- Research Area: Software Engineering; Specialty: Refactoring
- Office hours as-posted on the course page, and by appointment

• Previously:
- Assistant Professor at the University of Texas at San Antonio
- Affiliate Assistant Professor with the University of Washington, Bothell
- Sun Microsystems* (2000–2003) — (*the makers of Java, now owned by

Oracle) I worked on a parallel debugger called Prism
- Basho Technologies (2013) — I worked on a NoSQL database
- Google Inc (2014) — I used Javascript for front-end programming, and

Java for back-end services
- Independent contractor (various times) — I once worked on porting

Microsoft Word/Office 98 from Windows to the Mac OS (PowerPC days)

Lecture 1 — August 3, 2015

2

• “Language shapes the way we think, and determines what we can
think about.” —Benjamin Whorf

• “Mathematical notation provides perhaps the best-known and best-
developed example of language used consciously as a tool of
thought.” —Kenneth E. Iverson

Why Study Programming Languages?

• Hypothesis: Programming language shapes programming
thought

• Characteristics of a language affect how ideas can be
expressed in the language

3

• Today:
- Course Overview
- Specifying Syntax

• Resources:
- Text: Structure and Interpretation of Computer Programs, by Abelson,

Sussman, and Sussman, Second Edition. A classic! Full text:
https://mitpress.mit.edu/sicp/full-text/book/book.html

- Videos: http://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-001-structure-and-
interpretation-of-computer-programs-spring-2005/video-
lectures/

- Reference: The Scheme Programming Language, Fourth Edition, by
R. Kent Dybvig. Full text: http://www.scheme.com/tspl4/

CSE130 Summer Session II, 2015

4

• You will learn
- several new languages and constructs
- ways to describe and organize computation
- understand the limits of computation

• Will learn the anatomy of a PL
• Fundamental building blocks of

languages reappear in different guises in
different languages and different settings

• Buried inside any extensible system is a
programming language
- Emacs: E-Lisp; Word: WordBasic; Quake:

QuakeC…
- SQL, Renderman, LaTeX…

Course Goals
“Free your mind” —Morpheus

Primary languages in this
course:

- Scheme
- Java 8
- JavaScript (Node.js/

Harmony)
- Prolog and prolog-like

languages
- Lambda Calculus

5

• Our site: http://cse130.instructures.org
• Evaluation:

- 10% — Written Assessments; 4 total, take home, prep for the final
- 30% — Programming Exercises
- 30% — Interpreter Project
- 30% — Final

• First reading:
- Read Sections 1.1 and 1.2 of SICP (pages 1–56)

CSE130: Programming Languages
“But I can only show you the door. You’re the
one that has to walk through it.” —Morpheus

6

• All work must be your own
• If you are in doubt about what constitutes plagiarism, please

contact me
• If you are aware of academic misconduct, you can either report it

to me or the academic integrity office:
- https://students.ucsd.edu/academics/academic-integrity/reporting.html
- There is also an anonymous Whistleblower Hotline: (877) 319-0265

• Because you will be given access to the autograder tool, be
mindful to use this access responsibly
- Echoing the expected outputs without property analyzing the inputs may

make a test “PASS” the autograder, but that is gaming the system
- Any submissions that falsify results like this will get a zero

• All submissions will be inspected by the course staff and
automated tools to detect plagiarism and gaming-the-system

Academic Integrity

Syntax vs. Semantics
c = a + b;

7

8

• Grammars are used to precisely specify the syntax of a
language.
- A grammar is a set of rules that describe a language’s syntax
- Tokens (or terminals) are the “alphabet” grammars are made from
- Non-terminals are named entities in the grammar, one step above

tokens

• Rules relate non-terminals to a sequence of tokens and non-
terminals:

non-terminal → [sequence of tokens, non-terminals]
- Where “→” can be pronounced as “can have the form of”
- Sequence can possibly be empty, in which case an “ε” is used as a

placeholder

Specifying Syntax

9

JavaIdentifier → Letter
JavaIdentifier → JavaIdentifier LetterOrDigit
Letter → _ | A | B | ... | Z | a | b | ... | z
LetterOrDigit → Letter | Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Things to note:
- Input alphabet is ASCII
- A non-terminal can be defined by multiple rules
- Rules can be “recursive”
- “A → B | C” is shorthand to mean “A → B” and “A → C”

Syntax Example: Java Identifiers

10

JavaIdentifier → Letter
JavaIdentifier → JavaIdentifier LetterOrDigit
Letter → _ | A | B | ... | Z | a | b | ... | z
LetterOrDigit → Letter | Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Syntax Example: Java Identifiers

i2k

11

• Tokens don’t have to be only ASCII.
• Instead, we can define grammars from any set of symbols.
• An identifier is one kind of token in Java

• The tokens are in blue:
ImportDeclaration → import JavaIdentifier DottedNames OptStar ;
DottedNames → ε | DottedNames . JavaIdentifier
OptStar → ε | . *

Syntax Example: Java import statement

12

• Extended Backus-Naur form notation (EBNF):
- [x] means zero or one occurrences of x
- { x } means zero or more occurrences of x

ImportDeclaration → import JavaIdentifier {. JavaIdentifier} [. *] ;

• Concise, easier to read, less need for ε
• Compare to non EBNF version:

ImportDeclaration → import JavaIdentifier DottedNames OptStar ;
DottedNames → ε | DottedNames . JavaIdentifier
OptStar → ε | . *

EBNF Example: Java import statement

