
• Today:
- EBNF
- Scheme

• Readings:
- Structure and Interpretation of Computer

Programs: Section 1.3
- [Finish reading SICP 1.1, 1.2 if you

haven't already]

• Exercises, due Monday, August 10:
- Do 1.2, 1.3, 1.11, 1.12, 1.16, putting all

solutions in a file named hw1.scm
- Turn-in instructions to follow

CSE130 Summer Session II

Lecture 2 — August 5, 2015

1

• Extended Backus-Naur form notation (EBNF):
- [x] means zero or one occurrences of x
- { x } means zero or more occurrences of x

ImportDeclaration → import JavaIdentifier {. JavaIdentifier} [. *] ;

• Concise, easier to read, less need for ε
• Compare to non EBNF version:

ImportDeclaration → import JavaIdentifier DottedNames OptStar ;
DottedNames → ε | DottedNames . JavaIdentifier
OptStar → ε | . *

EBNF: Java import statement example

2

• Scheme is a variant of LISP, invented at MIT by Guy Steele
and Gerald Sussman

• Inspired by making LISP even more like the 1930s
mathematical logic on which it was based: Lambda Calculus

• Simple syntax, but very powerful language
• Scheme Rules:

- Legal expressions have rules for construction from simpler pieces
- (Almost) Every expression has a value, which is “returned” when an

expression is evaluated
- Every value has a type

And Now Scheme

3

• Primitives

• Means of Combination

• Means of Abstraction

Kinds of Language Constructs

4

• So-called self-evaluating primitives: the value of the
expression is just the object itself:
- Numbers: 29, -35, 1.34, 1.2e5
- Strings: "this is a string"
- Characters: #\a, #\b, #\z, #\newline
- Booleans: #t, #f

• Built-in procedures to manipulate primitives:
- For numbers: +, -, *, /, >, <, >=, <=, =, abs, max
- For strings: string-length, string=?, substring, string-
append

- For characters: char=?, char<?, char-numeric?, char-upcase
- For booleans: and, or, not

Language Elements: Primitives

5

• Built-in procedure names:
- +, -, *, /, >, <, >=, <=, =, abs, max, string-length,
string=?, substring, string-append, char=?,
char<?, char-numeric?, char-upcase, and, or, not

• These names are expressions, which means they have values
• So, what would be the value of ‘+’?
• Syntax:

- A valid Scheme identifier

• Semantics:
- These are self-evaluating, so no further evaluation steps are needed

Language Elements: Primitives

6

• Alphabet: ASCII characters
• Case is not important, e.g., FUN, fun, Fun

- case matters in variants, like Racket

• Scheme names are flexible: pi*2, <object>, *example*, <?

Identifier → Initial Subsequents | + | - | ...
Subsequents → Subsequent Subsequents | ε
Initial → Letter | ! | $ | % | & | * | / | : | < | = | > | ? | ~ | _ | ^
Subsequent → Initial | Digit | . | + | - | @
Letter → a | b | … | z
Digit → 0 | 1 | … | 9

Scheme Identifier Syntax

7

• The apply operation: Apply a procedure to a series of
arguments: 
 
 
(We can also say that we are applying an operator to its
operands.)

• Syntax:
- Open parenthesis at the start
- Close parenthesis at the end
- Expression (whose value is a procedure)
- Other expressions, whose values become arguments

• Semantics:
- Evaluate the sub-expressions, then apply the evaluated procedure to

the evaluated arguments

Language Elements: Combinations

(+ 22 34)

8

• Can use nested combinations-- Just apply rules recursively:

Language Elements: Combinations

(+ (+ 3 (+ 15 4))
 (+ (* 11 10) 2)) 134

(+ (* 2 3) 4) 10

(* (+ 3 4) (- 8 2)) 42

9

• So far, just a fancy calculator with prefix notation
• In order to abstract an expression, we need a way to give it a

name. One way is with define:

• This is a special form
• Syntax:

- It has the syntax of the apply operation, but it is not an application
- (define Name Expression)

• Semantics:
- Does not evaluate the second expression
- But does evaluate the third expression
- Rather, it pairs Name with value of the Expression

Language Elements: Abstractions

(define score 23)

10

• To get the value of a name, just look up pairing in
environment:

• This is done for +, *, abs, max…

Language Elements: Abstractions

(define total (+ 12 13))
(* 100 (/ score total)) 92

score 23

+ #<procedure:+>

11

Rules for Evaluation
1. If self-evaluating, return value.
2. If a name, return value associated with name in environment
3. If a special form, …“do something special”
4. If a combination, then:

- Evaluate all of the sub-expressions of combination (in any order)
- Apply the operator to the values of the operands (arguments) and

return result

Scheme Basics

12

• When an expression is entered into the computer, it is
processed by a reader

• An internal representation is passed to an evaluator
- application may involve more evaluations

• The resulting value is then printed

Read-Eval-Print

(+ 3 (* 4 5)) 23

13

Define-rule:
1. Evaluate second operand only
2. Name in first operand position is bound to that value
3. Overall value of the define expression is undefined

The define Special Form

14

• What just happened?

Operators are just names

(define fred +) undefined

(+ 3 5) 8

(fred 4 6) 10

15

• Procedures capture ways of doing things
• Special expression in Scheme—the lambda expression:

• Syntax:
- (All in parentheses)
- lambda
- Zero or more symbol names in another pair of parenthesis (the

function’s parameters, if any)
- One or more expressions (the function’s body)

• Value:
- The value of a lambda expression is a procedure

Language Elements: Abstractions

(lambda (x) (* x x)) #<procedure>

16

• Lambda is another special form
• It creates a procedure and returns it as a value
• This value can be used anywhere you would use a procedure:

Language Elements: Abstractions

((lambda (x) (* x x)) 5) 25

17

Application in Action

• We can also give it a name:

25

((lambda (x) (* x x)) 5)

(* 5 5)

(define square
 (lambda (x) (* x x)))

(square 5)

25

18

“Syntactic Sugar”
Syntactic forms that are more convenient, but
don’t make the language any more expressive,
are sometimes referred to as “sugar.”

E.g.,

is sugar for:

(define square
 (lambda (x) (* x x)))

(define (square x)
 (* x x))

19

The if Special Form
• An if expression has three sub-expressions:

• Evaluator first evaluates the predicate expression
• If it evaluates to #t (true), then the evaluator

evaluates and returns the value of the
consequence expression

• Otherwise, it evaluates and returns the value of
the alternative expression

• More idiomatic to use cond

(if <predicate>
 <consequence>
 <alternative>)

20

The cond Special Form
• if does not handle else-if cases well without

lots of nesting. Instead, cond can be used:

• If none of the clauses evaluate to true and there
is no else clause then the result is unspecified

(define (sign-string n)
 (cond
 ((< n 0) "negative")
 ((> n 0) "positive")
 (else "zero")))

21

Variable Arity Procedures
Variable-arity procedures can take a different
number of arguments. E.g., like printf in C.

!

!

!

! !

!

!

(and #t (< 1 2) #t)

(and #f (> 1 2))

(+ 1 2 3)

(and)

(or)

(- 1)

(+) !(*)

!(< 1 2 3)

!(> -1)

!(/ 3)

!(-)!(/) 22

Other Special Forms
• Both logical and and or short circuit:

• Evaluates the expressions one at a time, in left-to-
right order.

– For and:
– if any expr evaluates to false, the value of the and is false

and the rest of the exprs are not evaluated If true, its
value is the value of the last expr

– For or:
– if any expr evaluates to true, that value is returned and

the rest of the exprs are not evaluated
• not does not short circuit: it is an ordinary

procedure and thus not a special form

(and <e1> ... <en>)

(or <e1> ... <en>)

23

Rules for expression evaluation in the substitution model:
1. If self-evaluating, (e.g., a number) just return that value.
2. If a name, replace with values associated with that name
3. If expression is a lambda, create procedure and return
4. If expression is a special form, (e.g., if, and) follow specific

rules for evaluating sub-expressions
5. If expression is a compound expression, then:

- Evaluate all of the sub-expressions of combination (in any order)
- If procedure is primitive, just do it
- If procedure is compound procedure (created by lambda),

substitute value of each sub-expression for corresponding procedure
parameter in body of procedure, then repeat on body

The Substitution Model

24

