Lecture 3 — August 10, 2015

* Today:
- The substitution model
- lteration and tail calls
- Block structure
- The let special forms
* Readings:
- SICP: Finish Section 1.3, get started on Section 2.1

CSE130 Summer Session ||

More Special Forms

Both logical and and or short circuit:

(and <e;> ... <e,>)

(or <e;>...<e,>)

Evaluate the expressions one at a time, left-to-right

For and:

— If any expr evaluates to false, the value of the and is false and
the rest of the exprs are not evaluated

— If true, its value is the value of the last expr

For or:

— If any expr evaluates to true, that value is returned and the rest
of the exprs are not evaluated

not does not short circuit: it is an ordinary procedure, not
a special form

The way we’ve been evaluating expressions is through applicative order:

- Evaluate the operator and operands first, and then apply the procedure to
those arguments

An alternative is normal order:
- Evaluate operands only when their values are needed.

(f 5)

(sum-of-squares (+ 5 1) (x 5 2))

(+ (square (+ 5 1)) (square (x 5 2)))

(+ (x (+51) (+51)) (x (x52) (x5 2)))
(+ (* 6 6) (*x 10 10))

(+ 36 100)

136

(f 5)
(sum-of-squares (+ 5 1) (x 5 2))

(sum-of-squares 6 10) .
(define (f a)

e) (ears 10 e s (2) (= 0 2

(+ 36 100) (define (sum-of-squares x y)
136 (+ (square x) (square y)))

L OOpS

* There are no special forms or procedures in order to loop.
* We already have what we need: Recursion!

(define (sum n)
(if (<= n 0)
0]
(+ n (sum (- n 1)))))

The Substitution Model

Rules for expression evaluation in the substitution model:
1. If self-evaluating, (e.g., a number) just return that value.
f a name, replace with values associated with that name

2
3. If expression is a Lambda, create procedure and return
4

f expression is a special form, (e.g., 1f, and) follow specific
rules for evaluating sub-expressions
5. If expression is a compound expression, then:
- Evaluate all of the sub-expressions of combination (in any order)
- |f procedure is primitive, just do it

- |f procedure is compound procedure (created by Lambda),
substitute value of each sub-expression for corresponding procedure
parameter in body of procedure, then repeat on body

Substitution Model in Action

(define (fact n)
(if (=n1l1l) 1 (*xn (fact (- n 1)))))

(fact 3)

(if (=3 1) 1 (x 3 (fact (- 3 1))))

(if #f 1 (x 3 (fact (- 3 1))))

(x 3 (fact (- 3 1)))

(x 3 (fact 2))

(* 3 (if (=2 1) 1 (*x 2 (fact (- 2 1)))))
(*» 3 (if #f 1 (x 2 (fact (- 2 1)))))

(* 3 (x 2 (fact (- 2 1))))

(x 3 (x 2 (fact 1)))

(*» 3 (x2 (if (=11) 1 (*x1 (fact (-11))))))
(* 3 (x 2 (if #t 1 (x 1 (fact (- 11))))))
(x 3 (x 2 1))

(x 3 2)

6

Detferred Tasks

* The evaluator deferred multiplications while it worked on
solving recursive sub-problems:

(fact 4)

(x 4 (fact 3))

(x 4 (x 3 (fact 2)))

(* 4 (x 3 (x 2 (fact 1))))
(x4 (x 3 (x21)))

24

* So, space required is O(7)

iterative Algorithms

* An iterative algorithm uses constant space

(define (ifact n)
(ifact-helper 1 1 n))

(define (ifact-helper product counter n)
(if (> counter n)
product
(1fact-helper (* product counter)
(+ counter 1)

n)))

iterative Algorithm: Evaluation

(ifact 3)

(ifact-helper 1 1 3)

(if (> 1 3) 1 (ifact-helper (x 1 1) (+ 1 1) 3))
(i fact-helper 1 2 3)

(if (> 2 3) 1 (ifact-helper (x 1 2) (+ 2 1) 3))
(i fact-helper 2 3 3)

(if (> 3 3) 2 (ifact-helper (x 2 3) (+ 3 1) 3))
(i fact-helper 6 4 3)

(if (> 4 3) 6 (ifact-helper (x 6 4) (+ 4 1) 3))
6

* No growing list of pending operations
* Partial answers are accumulated
* The “last thing” a procedure does is call itself

Tall Calls and Tall Position

* During evaluation, a procedure is replaced by the last thing it
does. Here, 1 fact-helper returns the value, not i fact!

(define (ifact n)
(ifact-helper 1 1 n))

(ifact 3)
(1fact-helper 1 1 3)

. Acall is in tail positionifitis: [Dybvig, 3.2]

The last expression in the body of a Llambda expression

The consequent or alternative part of an 1f expression in tail position

The last sub-expression of an and or or expression in tail position

The last expression of a let in tail position

10

Tail Call Examples

« Each of the calls to f (in the expressions below) are tail calls
« But the calls to g are not.

(Lambda () (f (g)))

(Lambda () (if (g) (f) (f)))
(Lambda () (or (g) (f)))
(Lambda () (and (g) (f)))

* Remember: IASEVIBTVOTEEISITP

- If a sub-expression’s value immediately becomes the value of the
entire expression (if the sub-expression is evaluated at all) it is in tail
position.

11

Block Structure

« defines can be nested at the fop of procedure bodies:

(define (ifact n)
(define (i1fact-helper product counter n)
(if (> counter n)
product
(1fact-helper (* product counter)
(+ counter 1)

h)))
(ifact-helper 1 1 n))

* Now 1ifact-helper is visible only to i fact and no one else.

12

Lexical Scope

* This nesting follows lexical scoping rules.
* So, we don’t need to pass nto i fact-helper:

(define (ifact n)
(define (ifact-helper product counter)
(if (> counter n)
product
(1fact-helper (* product counter)
(+ counter 1))))
(1ifact-helper 1 1))

13

Semantics of Scoping

* Dynamic scope:
looks up the dynamic call

 Static scope:

looks up the syntax tree at

compile/parse time

class Foo

— field x

— method bar

L statement fist

— method print

| L

|

I statement list
|

stack at runtime

main record

args; foo ptr

bar record

X

print_x record

14

Static vs. Dynamic Scope

class Foo {
static int x = 203

void bar () {
int x = 10;
print_x();
}

void print_x() {
System.out.print(x);
}
}

If we call bar, what value
will print_x print using:

 Static scope?

* Dynamic scope?

15

The benefits of naming

* Values that are used multiple times in a procedure can benefit
from being named (why?)

* E.g., flxy) =x(1 +xy)? +y(1 —y) + (1 +xy)(1 -y)

(define (f x y)
(define a (+ 1 (*x x y)))
(define b (- 1 vy))
(+ (*x x a a)
(x y b)
(x a b)))

16

The let Special Form

(define (f x y)
(define a (+ 1 (*x x y)))
(define b (- 1 vy))
(+ (x x a a)
(x y b)
(x a b)))

Can be expressed as:

(define (f x y)
(let ([a (+ 1 (*x x y))]
[b (- 1y)])
(+ (*x x a a)
(x y b)
(x ab))))

Note: Using []s instead of ()s is just a Racket feature to help
with visual grouping. They are interchangeable.

17

The let Special Form

Just syntactic sugar:

(define (f x y)
(let ([a (+ 1 (*x x y))]
[b (- 1vy)])
(+ (*x x a a)
(x y b)
(x ab))))

for:

(define (f x y)

((lambda
(+ (*

(a b)
X a a)
y b)

ab)))
X y))

(-1y)))

18

Scoping of initializers in let

* The syntactic sugar definition actually explains something
about the scope of new variables introduced by let:

(define (f n)
(let ((n (+ n 1)))
n))

(f 3) —>4
(f ©) ——p]

19

let’s let functions

» let can be used to define any kind of data, including functions:

(define (odd? n)

(let ((even (lambda (n)

(zero? (remainder n 2)))))

(even (- n 1))))

(odd? 3) ——P #t
(odd? 0) —— #f

20

NoO circular references In let

 But!the functions we define with 1et cannot be recursive:

(define (ifact n)
(let ((ifact-iter
(lambda (product counter)
(if (> counter n)
product
(ifact-iter (* product counter)
(+ counter 1))))))

(ifact-iter 1 1)))

ifact-iter: unbound identifier in module 1in:

ifact-iter

21

The letrec Special Form

* You can use another form, Letrec, for such circular
dependencies:

(define (ifact n)
(letrec ((ifact-iter
(lambda (product counter)
(1f (> counter n)
product
(ifact-iter (* product counter)
(+ counter 1))))))

(ifact-iter 1 1)))

22

The named-1let Special Form

* This use of letrec is common enough to warrant its own
special form, the named-let syntax:

(define (ifact n)
(let ifact-iter ((product 1) (counter 1))
(if (> counter n)
product
(ifact-iter (* product counter)
(+ counter 1)))))

* This use of lLetrec is common enough to warrant its own
special form, the named-let syntax:

The letx Special Form

let cannot handle linear dependencies:

(define (g n)
(let ([a (* 2 n)]
[b (* a a)])
(+ab (xab))))

(But Racket allows this for Letrec, in addition to the newer
Scheme standard)

but Let* can...
(define (g n) ...which is equivalent to nesting
shees (@ 2 myl (define (g n)
[b (x a a)])
(+ ab (*ab)))) (let ([a (* 2 n)])
(let ([b (* a a)])
(+ ab (xab)))))

24

