Lecture 4 — August 12, 2015

Today:
Abstracting Data
Lists

Types

Higher-Order Procedures

Readings:

- Finish SICP Section 2.1

- Read SICP 2.2, 2.3, & 2.4 — including all footnotes and exercises

CSE130, Summer Session 11

Compound Data

* “glue” together data elements
* “unglue” them to get the more basic components back out

* Ideally want the glue to have the closure property:

- “The result obtained by creating a compound data structure can itself be
treated as a primitive object and thus be input to the creation of another

compound object”

The Node Abstraction

Let’s use induction:

we have a bAse case
we have an inDuctive case

If we can hold a value in A, and have L |
the option to have D point to another |
node, then we can hold as many
values as we want.

Pairs, a.k.a. Cons Cells

* Aregular procedure, cons(tructor)

(cons <x-exp> <y-exp>)

Where <x-exp> evaluates to a value <x-val>,
and<y-exp> evaluates to a value <y-val>
Returns a “pair” <P>...

whose “car part” Is <x-val>, and

whose “cdr part” is <y-val>

* Returns the car part of the pair <P>:
(car <P>) -—¥ <x-val>
* Returns the cdr part of the pair <P>:

(cdr <P>) - <y-val>

Pair Abstraction

* Constructor

;cons: A, B — Pair<A, B>
(cons <x><y>) ~————yp<f>

* Accessors
; car: Pair<A,B> — A
(car <P>) ——p <x>

; cdr: Pair<A, B> — B
(cdr <P>) mme—p <Y>

* Predicate

; pair?: anytype — boolean
(pair? <z>) ——p #tif <z>is a pair; else #f

Pair Abstraction

 There is a contract between the constructor and the selectors:

(car (cons <a>)) ~———= <a>
(cdr (cons <a>))7

* Pairs have the property of closure; we can use the result of a
pair as an element of a new pair:

(cons (cons 1 2) 3)

* Which produces the following “box and pointer” diagram:

'i 3

112

Conventional Interfaces: Lists

* Alist is a data object that can hold an arbitrary number of
ordered items

* More formally, a list is a sequence of pairs with the following
properties:

- Car part of a pair in sequence — holds an item

- Cdr part of a pair in sequence — holds a pointer to rest
of list

- Empty-list “nil” — signals no more pairs, or end of list
* In the book “n11” is used before it is “dispensed with”
- Instead, use ' () as the empty list

Box and Pointer Diagram Exercise

(cons el e2)

(list efe2... en)

 car is always an element
* cdr is always the rest of the list

(null? <z>) —P #t if <z> evaluates to empty list

Common Pattern: consing up a list

* Recursive structures naturally lead to recursive algorithms:

(define (enumerate-interval from to)
(if (> from to)
'()
(cons from
(enumerate-interval
(+ 1 from)

to))))

(enumerate-interval 1 5) —¥% (1 2 3 4 5)
(enumerate-interval 1 1) —¥% (1)
(enumerate-interval 1 0) -—¥ ()

Common Pattern: consing up a list

(define (e-1 from to)
(if (> from to) '()
(cons from (e-1 (+ 1 from) to))))

(e-1 2 4)

(if (> 2 4) '() (cons 2 (e-1 (+ 1 2) 4)))
(if #f '() (cons 2 (e-1 (+ 1 2) 4)))
(cons 2 (e-1 (+ 1 2) 4))

(cons 2 (e-1 3 4))

;; ...omit some intermediate steps

(cons 2 (cons 3 (e-1 4 4)))

(cons 2 (cons 3 (cons 4 (e-1 5 4))))
(cons 2 (cons 3 (cons 4 '())))

—p (2 3 4)

Common Pattern: cdring down a list

(define (list-ref 1lst n)
(if (= n 0)
(car 1lst)
(list-ref (cdr lst) (- n 1))))

* Let’'s try:

(define (length 1st)

10

cdring and consing Examples

;, create a new list from the given one, squaring each element
(define (square-list 1st)
(if (null? 1st)
'()
(cons (square (car 1st))
(square-list (cdr 1st)))))

;; create a new list from the given one, doubling each element

(define (double-list 1lst)
(if (null? 1st)
"()
(cons (* 2 (car 1st)
(double-1list (cdr 1lst))))))

11

cdring and consing Examples

(define (copy 1lst)
(if (null? 1st)
'()
(cons (car 1st)
(copy (cdr 1lst)))))

(Copy ('L-ist "all "b" "C" "d"))
”"""""-ib("a" ||b" "C" Ild")

12

cdring and consing Examples

;; create a new list from the given one, composed of only the even
;- elements
(define (filter-evens list)
(cond
[(null? 1list) '()]
[(even? (car 1list))
(cons (car 1list)
(filter-evens (cdr list)))]
[else (filter-evens (cdr 1list))]))

* Note: The []s could also be just plain ()s
* Inside and outside of Racket, using ()s is always legal

13

cdring and consing Examples

(define (append listl list2) ; recursive form

Types

 Addition is not defined for strings:

(+ 5 10) — 15

(+ Hh-ill 5)

- +: contract violation
expected: number?
given: "hi"
argument position: 1st

* The addition procedure has associated with it an expectation of
what kinds of arguments it will get

- Here, the expectation is that the type of each argument is a number

15

Types: Simple Data

Number

- complex (predicate complex? usually the same as number?)
- real (predicate real? usually the same as rational?)

- rational

- integer

String

Boolean

Names (symbols)

16

Types: Compound Data

Pair<A, B>

« A compound data structure formed by a cons pair, in which the
first element is of type A, and the second of type B:

- e.g., (cons 1 2) hastype Pair<number,number>

List<A> = Pair<A, List<A> or nil>

* A compound data structure that is recursively defined as a pair:
- Whose first element is of type A, and
- Whose second element is either a list of type A or the empty list.
- e.g., (list 1 2 3) hastype List<number>;

- and (list 1 "string" 3) hastype List<number or string>

17

Types: Procedures

* Because procedures operate on object, and return values, we
can define their types as well.

* We will denote a procedure type by indicating the types of each
of its parameters, and the type of the returned value, plus the
symbol — to indicate that the arguments are mapped to the

return value
* E.qg.,
number — number

specifies a procedure that takes a number as input, and returns
a humber as output

18

Type Examples

EXxpression: Evaluates to a value of type:
15 number

"hi" string

square number = number

> number, number = boolean

* The type of a procedure is a confract:

- |f the operands have the specitied types, the
procedure will result in a value of the specified type

- Otherwise, its behavior is undefined; maybe an error
IS signhaled, maybe random behavior

19

Types, precisely

A type describes a set of Scheme values
- BE.g,

number — number

describes the set of: All procedures, whose result is a number, which
require one argument that must be a number

Every Scheme value has a type

Some values can be described by multiple types
- If so, choose the type which describes the largest set

- For example, addition maps two integers to an integer, but it also
maps two numbers (e.qg. reals) to a number

Special-form keywords, like define, do not name values,
therefore special-form keywords have no type

20

What are the types”

(lambda (a b ¢c) (if (> a 0) (+ b c) (- b c)))

(Lambda (p) (if p "hi" "bye"))

(* 3.14 (*x 2 5))

(+ car cdr)

21

Motivating higher-order procedures...

(define (pi-sum a b)
(if (> a b)
0

(define (sum-integers a b) Ezlmnt
(if é> a b) et

(+ a (sum-integers (+ 1 a) b))))

(define (sum-squares a b) :Efﬂokz
(if (> a b) k=1
(0]

(+ (square a) (sum-squares (+ 1 a) b))))

. . e 101)
; approximates pi*pi/8S Z 1/k?
k=1,0dd

(+ (/ 1 (square a))
(pi-sum (+ a 2) b))))

What are the patterns?

22

Higher-Order Procedures

* What’s the type of this function?

(define (sum term a next b)
(if (> a b)
0]
(+ (term a)
(sum term (next a) next b))))

* A higher-order procedure takes a procedure as an argument
and/or returns one as a value

23

Higher-Order Procedures

(define (sum-integers a b)
(sum (lambda (x) x) a (lambda (x) (+ x 1)) b))

(define (sum-squares a b)
(sum square a (lambda (x) (+ x 1)) b))

(define (pi-sum a b)
(sum (lambda (x) (/ 1 (square x))) a
(lambda (x) (+ x 2)) b))

; Or, another way to write sum-integers...
(define (id x) x) ,identity function
(define (addl n) (+ n 1))
(define (sum-integers a b)

(sum id a addl b))

24

;, create a new list from the given one, squaring each element
(define (square-list 1lst)
(if (null? 1st)
'()
(cons (square (car 1lst))
(square-list (cdr 1lst)))))

;; create a new list from the given one, doubling each element

(define (double-1list 1st)
(if (null? 1st)
'()
(cons (* 2 (car 1lst)
(double-1list (cdr 1lst))))))

The pattern is:

we take a list as input,

“walk down” the list an element at a time,
do “something” to each element, and
construct a new list of the results

25

Pattern: Transtforming a list

;, create a new list from the given one, applying the given procedure
;, to each element
(define (map proc 1lst)
(if (null? 1l4ist)
'()
(cons (proc (car 1lst))
(map proc (cdr 1lst)))))

(define (square-list 1lst)
(map square 1lst))

(define (double-list 1st)
(map (lambda (x) (* 2 x)) 1lst))

“But how is this different from Hadoop?”
(same “map” as in “map-reduce”!)

26

Abstracting away the commonality

;; create a new list from the given one, applying the

;5 given procedure to each element
(define (map proc 1lst)

(1f (null? list)
' ()
(cons (proc (car 1lst))
(map proc (cdr 1st)))))

(define (square-list 1lst)
(map square 1lst))

(define (double-list 1lst)
(map (lambda (x) (* 2 x)) 1lst))

27

Common Pattern: Filtering a List

;» pred must be a procedure that returns a boolean

(define (filter pred 1lst)

(cond

[(null? 1st) '()]
[(pred (car 1lst))
(cons (car 1st)

(filter pred (cdr 1st)))]
[else (filter pred (cdr 1lst))]))

(filter even? (list 1 2 3 4 5 6))

~ (2 4 6)

28

Pattern: Result accumulation

(define (add-up 1st)
(if (null? 1st)
0]
(+ (car lst) (add-up (cdr 1lst)))))

(define (mult-all 1st)
(if (null? 1st)
1
(* (car 1lst) (mult-all (cdr 1st)))))

(define (fold-right op init 1st)

29

Lambdas encapsulate their environment

A lambda remembers the values of the variables in its
environment:

(define (make-adder a)
(lambda (n) (+ n a)))

(define successor (make-adder 1))
(define add-5 (make-adder 5))

(successor 2)
(add-5 10)
(add-5 (add-5 (successor 24)))

30

The cons-car-cdr Conspiracy

(car (cons a b))—#a
(cdr (cons a b))¥%b

A group of functions can “conspire” with each other. What we
want is to define our own cons, car, and cdr functions:

(define (cons a b)
(lambda (selector)
(if selector a b)))
(define (car p) (p #t))

(define (cdr p) (p #f))

31

The cons-car-cdr Conspiracy

» Section 2.1.3 “mind boggling” definition
 We don’t need Booleans or cond or 1 f!

(define (cons a b)
(lambda (selector)
(selector a b)))

(define (car p)
(p (Lambda (a b) a)))

(define (cdr p)
(p (Lambda (a b) b)))

32

