
• Today:
- Abstracting Data
- Lists
- Types
- Higher-Order Procedures

• Readings:
- Finish SICP Section 2.1
- Read SICP 2.2, 2.3, & 2.4 — including all footnotes and exercises

CSE130, Summer Session II

Lecture 4 — August 12, 2015

1

• “glue” together data elements
• “unglue” them to get the more basic components back out
• Ideally want the glue to have the closure property:

- “The result obtained by creating a compound data structure can itself be
treated as a primitive object and thus be input to the creation of another
compound object”

Compound Data

A D
Let’s use induction:

• we have a bAse case
• we have an inDuctive case

If we can hold a value in A, and have
the option to have D point to another
node, then we can hold as many
values as we want.

The Node Abstraction

2

• A regular procedure, cons(tructor)

- Where <x-exp> evaluates to a value <x-val>,
- and<y-exp> evaluates to a value <y-val>
- Returns a “pair” <P>…
- whose “car part” is <x-val>, and
- whose “cdr part” is <y-val>

• Returns the car part of the pair <P>:

• Returns the cdr part of the pair <P>:

(cons <x-exp> <y-exp>)

(car <P>)

Pairs, a.k.a. Cons Cells

<x-val>

(cdr <P>) <y-val> 3

• Constructor

• Accessors

• Predicate

; cons: A, B → Pair<A, B>
(cons <x> <y>)

; car: Pair<A, B> → A
(car <P>)
; cdr: Pair<A, B> → B
(cdr <P>)

; pair?: anytype → boolean
(pair? <z>)

Pair Abstraction

<P>

<x>

<y>

#t if <z> is a pair; else #f
4

• There is a contract between the constructor and the selectors:

• Pairs have the property of closure; we can use the result of a
pair as an element of a new pair:

• Which produces the following “box and pointer” diagram:

(car (cons <a>)) <a>
(cdr (cons <a>))

(cons (cons 1 2) 3)

Pair Abstraction

1 2

3

5

• A list is a data object that can hold an arbitrary number of
ordered items

• More formally, a list is a sequence of pairs with the following
properties:
- Car part of a pair in sequence – holds an item
- Cdr part of a pair in sequence – holds a pointer to rest

of list
- Empty-list “nil” – signals no more pairs, or end of list

• In the book “nil” is used before it is “dispensed with”
- Instead, use '() as the empty list

Conventional Interfaces: Lists

6

• car is always an element
• cdr is always the rest of the list

(cons e1 e2)

(list e1 e2 … en)

(null? <z>) #t if <z> evaluates to empty list

Box and Pointer Diagram Exercise

7

(define (enumerate-interval from to)
 (if (> from to)
 '()
 (cons from
 (enumerate-interval
 (+ 1 from)
 to))))

(enumerate-interval 1 5) (1 2 3 4 5)
(enumerate-interval 1 1) (1)
(enumerate-interval 1 0) ()

Common Pattern: consing up a list

• Recursive structures naturally lead to recursive algorithms:

8

Common Pattern: consing up a list
(define (e-i from to)
 (if (> from to) '()
 (cons from (e-i (+ 1 from) to))))

(e-i 2 4)
(if (> 2 4) '() (cons 2 (e-i (+ 1 2) 4)))
(if #f '() (cons 2 (e-i (+ 1 2) 4)))
(cons 2 (e-i (+ 1 2) 4))
(cons 2 (e-i 3 4))
 ;; ... omit some intermediate steps
(cons 2 (cons 3 (e-i 4 4)))
(cons 2 (cons 3 (cons 4 (e-i 5 4))))
(cons 2 (cons 3 (cons 4 '())))
 (2 3 4)

9

(define (list-ref lst n)
 (if (= n 0)
 (car lst)
 (list-ref (cdr lst) (- n 1))))

(define (length lst)

Common Pattern: cdring down a list

• Let’s try:

10

cdring and consing Examples
;; create a new list from the given one, squaring each element
(define (square-list lst)
 (if (null? lst)
 '()
 (cons (square (car lst))
 (square-list (cdr lst)))))

;; create a new list from the given one, doubling each element
(define (double-list lst)
 (if (null? lst)
 '()
 (cons (* 2 (car lst)
 (double-list (cdr lst))))))

11

(define (copy lst)
 (if (null? lst)
 '()
 (cons (car lst)
 (copy (cdr lst)))))

(copy (list "a" "b" "c" "d"))
 ("a" "b" "c" "d")

cdring and consing Examples

12

;; create a new list from the given one, composed of only the even
;; elements
(define (filter-evens list)
 (cond
 [(null? list) '()]
 [(even? (car list))
 (cons (car list)
 (filter-evens (cdr list)))]
 [else (filter-evens (cdr list))]))

cdring and consing Examples

• Note: The []s could also be just plain ()s
• Inside and outside of Racket, using ()s is always legal

13

(define (append list1 list2) ; recursive form

cdring and consing Examples

14

• Addition is not defined for strings:

• The addition procedure has associated with it an expectation of
what kinds of arguments it will get
- Here, the expectation is that the type of each argument is a number

(+ 5 10) 15
(+ "hi" 5)
 +: contract violation
 expected: number?
 given: "hi"
 argument position: 1st

Types

15

• Number
- complex (predicate complex? usually the same as number?)
- real (predicate real? usually the same as rational?)
- rational
- integer

• String
• Boolean
• Names (symbols)

Types: Simple Data

16

Pair<A, B>

• A compound data structure formed by a cons pair, in which the
first element is of type A, and the second of type B:
- e.g., (cons 1 2) has type Pair<number,number>

List<A> = Pair<A, List<A> or nil>
• A compound data structure that is recursively defined as a pair:

- Whose first element is of type A, and
- Whose second element is either a list of type A or the empty list.
- e.g., (list 1 2 3) has type List<number>;
- and (list 1 "string" 3) has type List<number or string>

Types: Compound Data

17

• Because procedures operate on object, and return values, we
can define their types as well.

• We will denote a procedure type by indicating the types of each
of its parameters, and the type of the returned value, plus the
symbol → to indicate that the arguments are mapped to the
return value

• E.g.,
number → number

specifies a procedure that takes a number as input, and returns
a number as output

Types: Procedures

18

Expression: Evaluates to a value of type:
15 number
"hi" string

square number ! number
> number, number ! boolean

• The type of a procedure is a contract:
- If the operands have the specified types, the

procedure will result in a value of the specified type
- Otherwise, its behavior is undefined; maybe an error

is signaled, maybe random behavior

Type Examples

19

• A type describes a set of Scheme values
- E.g., 

number → number  
describes the set of: All procedures, whose result is a number, which
require one argument that must be a number

• Every Scheme value has a type
• Some values can be described by multiple types

- If so, choose the type which describes the largest set
- For example, addition maps two integers to an integer, but it also

maps two numbers (e.g. reals) to a number

• Special-form keywords, like define, do not name values,
therefore special-form keywords have no type

Types, precisely

20

What are the types?

(lambda (a b c) (if (> a 0) (+ b c) (- b c)))

(lambda (p) (if p "hi" "bye"))

(* 3.14 (* 2 5))

(+ car cdr)

21

(define (sum-integers a b)
 (if (> a b)
 0
 (+ a (sum-integers (+ 1 a) b))))

(define (sum-squares a b)
 (if (> a b)
 0
 (+ (square a) (sum-squares (+ 1 a) b))))

(define (pi-sum a b) ; approximates pi*pi/8
 (if (> a b)
 0
 (+ (/ 1 (square a))
 (pi-sum (+ a 2) b))))

What are the patterns?

Motivating higher-order procedures…

22

• What’s the type of this function?

Higher-Order Procedures

• A higher-order procedure takes a procedure as an argument
and/or returns one as a value

(define (sum term a next b)
 (if (> a b)
 0
 (+ (term a)
 (sum term (next a) next b))))

23

Higher-Order Procedures
(define (sum-integers a b)
 (sum (lambda (x) x) a (lambda (x) (+ x 1)) b))

(define (sum-squares a b)
 (sum square a (lambda (x) (+ x 1)) b))

(define (pi-sum a b)
 (sum (lambda (x) (/ 1 (square x))) a
 (lambda (x) (+ x 2)) b))

; Or, another way to write sum-integers...
(define (id x) x) ; identity function
(define (add1 n) (+ n 1))
(define (sum-integers a b)
 (sum id a add1 b))

24

;; create a new list from the given one, squaring each element
(define (square-list lst)
 (if (null? lst)
 '()
 (cons (square (car lst))
 (square-list (cdr lst)))))

;; create a new list from the given one, doubling each element
(define (double-list lst)
 (if (null? lst)
 '()
 (cons (* 2 (car lst)
 (double-list (cdr lst))))))

25

The pattern is:
• we take a list as input,
• “walk down” the list an element at a time,
• do “something” to each element, and
• construct a new list of the results

Pattern: Transforming a list
;; create a new list from the given one, applying the given procedure
;; to each element
(define (map proc lst)
 (if (null? list)
 '()
 (cons (proc (car lst))
 (map proc (cdr lst)))))

(define (square-list lst)
 (map square lst))

(define (double-list lst)
 (map (lambda (x) (* 2 x)) lst))

“But how is this different from Hadoop?”
(same “map” as in “map-reduce”!)

26

Abstracting away the commonality
;; create a new list from the given one, applying the
;; given procedure to each element
(define (map proc lst)
 (if (null? list)
 '()
 (cons (proc (car lst))
 (map proc (cdr lst)))))

(define (square-list lst)
 (map square lst))

(define (double-list lst)
 (map (lambda (x) (* 2 x)) lst))

27

Common Pattern: Filtering a List

28

(filter even? (list 1 2 3 4 5 6)) (2 4 6)

;; pred must be a procedure that returns a boolean
(define (filter pred lst)
 (cond
 [(null? lst) '()]
 [(pred (car lst))
 (cons (car lst)
 (filter pred (cdr lst)))]
 [else (filter pred (cdr lst))]))

29

Pattern: Result accumulation
(define (add-up lst)
 (if (null? lst)
 0
 (+ (car lst) (add-up (cdr lst)))))

(define (mult-all lst)
 (if (null? lst)
 1
 (* (car lst) (mult-all (cdr lst)))))

(define (fold-right op init lst)

30

A lambda remembers the values of the variables in its
environment:

Lambdas encapsulate their environment

(define (make-adder a)
 (lambda (n) (+ n a)))

(define successor (make-adder 1))
(define add-5 (make-adder 5))

(successor 2)
(add-5 10)
(add-5 (add-5 (successor 24)))

A group of functions can “conspire” with each other. What we
want is to define our own cons, car, and cdr functions:

(car (cons a b)) a
(cdr (cons a b)) b

(define (cons a b)
 (lambda (selector)
 (if selector a b)))

(define (car p) (p #t))

(define (cdr p) (p #f))

The cons-car-cdr Conspiracy

31

32

• Section 2.1.3 “mind boggling” definition
• We don’t need Booleans or cond or if!

The cons-car-cdr Conspiracy

(define (cons a b)
 (lambda (selector)
 (selector a b)))

(define (car p)
 (p (lambda (a b) a)))

(define (cdr p)
 (p (lambda (a b) b)))

