
• Today:
- Abstracting Data 
- Lists 
- Types 
- Higher-Order Procedures 

• Readings:
- Finish SICP Section 2.1 
- Read SICP 2.2, 2.3, & 2.4 — including all footnotes and exercises
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• “glue” together data elements
• “unglue” them to get the more basic components back out
• Ideally want the glue to have the closure property:

- “The result obtained by creating a compound data structure can itself be 
treated as a primitive object and thus be input to the creation of another 
compound object”

Compound Data

A D
Let’s use induction:

• we have a bAse case
• we have an inDuctive case

If we can hold a value in A, and have 
the option to have D point to another 
node, then we can hold as many 
values as we want.

The Node Abstraction
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• A regular procedure, cons(tructor)

- Where <x-exp> evaluates to a value <x-val>, 
- and<y-exp> evaluates to a value <y-val> 
- Returns a “pair” <P>… 
- whose “car part” is <x-val>, and 
- whose “cdr part” is <y-val>

• Returns the car part of the pair <P>:

• Returns the cdr part of the pair <P>:

(cons <x-exp>  <y-exp>)

(car <P>)

Pairs, a.k.a. Cons Cells

<x-val>

(cdr <P>) <y-val> 3



• Constructor

• Accessors

• Predicate

; cons: A, B → Pair<A, B>
(cons <x> <y>)

; car: Pair<A, B> → A
(car <P>) 
; cdr: Pair<A, B> → B
(cdr <P>)

; pair?: anytype → boolean
(pair? <z>)

Pair Abstraction

<P>

<x>

<y>

#t if <z> is a pair; else #f
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• There is a contract between the constructor and the selectors:

• Pairs have the property of closure; we can use the result of a 
pair as an element of a new pair:

• Which produces the following “box and pointer” diagram:

(car (cons <a> <b>))      <a> 
(cdr (cons <a> <b>))      <b>

(cons (cons 1 2) 3)

Pair Abstraction

1 2

3
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• A list is a data object that can hold an arbitrary number of 
ordered items

• More formally, a list is a sequence of pairs with the following 
properties:
- Car part of a pair in sequence – holds an item 
- Cdr part of a pair in sequence – holds a pointer to rest 

of list 
- Empty-list “nil” – signals no more pairs, or end of list  

• In the book “nil” is used before it is “dispensed with”
- Instead, use '() as the empty list

Conventional Interfaces: Lists
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• car is always an element
• cdr is always the rest of the list

(cons e1 e2)

(list e1 e2 … en)

(null? <z>)     #t if <z> evaluates to empty list

Box and Pointer Diagram Exercise
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(define (enumerate-interval from to) 
  (if (> from to) 
      '() 
      (cons from 
            (enumerate-interval 
             (+ 1 from) 
             to))))

(enumerate-interval 1 5)     (1 2 3 4 5) 
(enumerate-interval 1 1)     (1) 
(enumerate-interval 1 0)     ()

Common Pattern: consing up a list

• Recursive structures naturally lead to recursive algorithms:
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Common Pattern: consing up a list
(define (e-i from to) 
  (if (> from to) '() 
      (cons from (e-i (+ 1 from) to))))

(e-i 2 4) 
(if (> 2 4) '() (cons 2 (e-i (+ 1 2) 4))) 
(if #f '() (cons 2 (e-i (+ 1 2) 4))) 
(cons 2 (e-i (+ 1 2) 4)) 
(cons 2 (e-i 3 4)) 
 ;; ... omit some intermediate steps
(cons 2 (cons 3 (e-i 4 4))) 
(cons 2 (cons 3 (cons 4 (e-i 5 4)))) 
(cons 2 (cons 3 (cons 4 '()))) 
     (2 3 4)
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(define (list-ref lst n) 
  (if (= n 0) 
      (car lst) 
      (list-ref (cdr lst) (- n 1))))

(define (length lst) 

Common Pattern: cdring down a list

• Let’s try:
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cdring and consing Examples
;; create a new list from the given one, squaring each element
(define (square-list lst) 
  (if (null? lst) 
      '() 
      (cons (square (car lst)) 
            (square-list (cdr lst))))) 

;; create a new list from the given one, doubling each element
(define (double-list lst) 
  (if (null? lst) 
      '() 
      (cons (* 2 (car lst) 
            (double-list (cdr lst))))))
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(define (copy lst) 
  (if (null? lst) 
      '() 
      (cons (car lst) 
            (copy (cdr lst)))))

(copy (list "a" "b" "c" "d")) 
     ("a" "b" "c" "d")

cdring and consing Examples
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;; create a new list from the given one, composed of only the even
;; elements
(define (filter-evens list) 
  (cond 
    [(null? list) '()] 
    [(even? (car list)) 
     (cons (car list) 
           (filter-evens (cdr list)))] 
    [else (filter-evens (cdr list))]))

cdring and consing Examples

• Note: The []s could also be just plain ()s
• Inside and outside of Racket, using ()s is always legal
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(define (append list1 list2) ; recursive form

cdring and consing Examples
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• Addition is not defined for strings:

• The addition procedure has associated with it an expectation of 
what kinds of arguments it will get
- Here, the expectation is that the type of each argument is a number

(+ 5 10)    15 
(+ "hi" 5)  
     +: contract violation 
  expected: number? 
  given: "hi" 
  argument position: 1st

Types
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• Number
- complex (predicate complex? usually the same as number?) 
- real (predicate real? usually the same as rational?) 
- rational 
- integer 

• String
• Boolean
• Names (symbols)

Types: Simple Data
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Pair<A, B>

• A compound data structure formed by a cons pair, in which the 
first element is of type A, and the second of type B:
- e.g., (cons 1 2) has type Pair<number,number> 

List<A> = Pair<A, List<A> or nil>
• A compound data structure that is recursively defined as a pair:

- Whose first element is of type A, and 
- Whose second element is either a list of type A or the empty list. 
- e.g., (list 1 2 3) has type List<number>; 
- and (list 1 "string" 3) has type List<number or string>

Types: Compound Data
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• Because procedures operate on object, and return values, we 
can define their types as well.

• We will denote a procedure type by indicating the types of each 
of its parameters, and the type of the returned value, plus the 
symbol → to indicate that the arguments are mapped to the 
return value

• E.g.,
number → number

specifies a procedure that takes a number as input, and returns 
a number as output

Types: Procedures
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Expression: Evaluates to a value of type:                       
15 number          
"hi" string            

square number ! number                       
> number, number ! boolean                            

• The type of a procedure is a contract:
- If the operands have the specified types, the 

procedure will result in a value of the specified type 
- Otherwise, its behavior is undefined; maybe an error 

is signaled, maybe random behavior

Type Examples
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• A type describes a set of Scheme values
- E.g., 

number → number  
describes the set of: All procedures, whose result is a number, which 
require one argument that must be a number 

• Every Scheme value has a type
• Some values can be described by multiple types

- If so, choose the type which describes the largest set 
- For example, addition maps two integers to an integer, but it also 

maps two numbers (e.g. reals) to a number 

• Special-form keywords, like define, do not name values, 
therefore special-form keywords have no type

Types, precisely
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What are the types?

(lambda (a b c) (if (> a 0) (+ b c) (- b c))) 

(lambda (p) (if p "hi" "bye")) 

(* 3.14 (* 2 5)) 

(+ car cdr) 
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(define (sum-integers a b) 
  (if (> a b) 
      0 
      (+ a (sum-integers (+ 1 a) b)))) 

(define (sum-squares a b) 
  (if (> a b) 
      0 
      (+ (square a) (sum-squares (+ 1 a) b)))) 

(define (pi-sum a b)  ; approximates pi*pi/8 
  (if (> a b) 
      0 
      (+ (/ 1 (square a)) 
         (pi-sum (+ a 2) b))))

What are the patterns?

Motivating higher-order procedures…

22



• What’s the type of this function?

Higher-Order Procedures

• A higher-order procedure takes a procedure as an argument 
and/or returns one as a value

(define (sum term a next b) 
  (if (> a b) 
      0 
      (+ (term a) 
         (sum term (next a) next b))))
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Higher-Order Procedures
(define (sum-integers a b) 
  (sum (lambda (x) x) a (lambda (x) (+ x 1)) b)) 

(define (sum-squares a b) 
  (sum square a (lambda (x) (+ x 1)) b)) 

(define (pi-sum a b) 
  (sum (lambda (x) (/ 1 (square x))) a 
       (lambda (x) (+ x 2)) b)) 

; Or, another way to write sum-integers...
(define (id x) x)   ; identity function 
(define (add1 n) (+ n 1)) 
(define (sum-integers a b) 
  (sum id a add1 b))
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;; create a new list from the given one, squaring each element
(define (square-list lst) 
  (if (null? lst) 
      '() 
      (cons (square (car lst)) 
            (square-list (cdr lst))))) 

;; create a new list from the given one, doubling each element
(define (double-list lst) 
  (if (null? lst) 
      '() 
      (cons (* 2 (car lst) 
            (double-list (cdr lst))))))
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The pattern is:
• we take a list as input,
• “walk down” the list an element at a time,
• do “something” to each element, and
• construct a new list of the results



Pattern: Transforming a list
;; create a new list from the given one, applying the given procedure
;; to each element
(define (map proc lst) 
  (if (null? list) 
      '() 
      (cons (proc (car lst)) 
            (map proc (cdr lst))))) 

(define (square-list lst) 
  (map square lst)) 

(define (double-list lst) 
  (map (lambda (x) (* 2 x)) lst))

“But how is this different from Hadoop?”
(same “map” as in “map-reduce”!)
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Abstracting away the commonality
;; create a new list from the given one, applying the 
;; given procedure to each element 
(define (map proc lst) 
  (if (null? list) 
      '() 
      (cons (proc (car lst)) 
            (map proc (cdr lst))))) 

(define (square-list lst) 
  (map square lst)) 

(define (double-list lst) 
  (map (lambda (x) (* 2 x)) lst))
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Common Pattern: Filtering a List
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(filter even? (list 1 2 3 4 5 6)) (2 4 6)

;; pred must be a procedure that returns a boolean
(define (filter pred lst) 
  (cond 
    [(null? lst) '()] 
    [(pred (car lst)) 
     (cons (car lst) 
           (filter pred (cdr lst)))] 
    [else (filter pred (cdr lst))]))
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Pattern: Result accumulation
(define (add-up lst) 
  (if (null? lst) 
      0 
      (+ (car lst) (add-up (cdr lst))))) 

(define (mult-all lst) 
  (if (null? lst) 
      1 
      (* (car lst) (mult-all (cdr lst)))))

(define (fold-right op init lst) 
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A lambda remembers the values of the variables in its 
environment:

Lambdas encapsulate their environment

(define (make-adder a) 
  (lambda (n) (+ n a))) 

(define successor (make-adder 1)) 
(define add-5 (make-adder 5)) 

(successor 2) 
(add-5 10) 
(add-5 (add-5 (successor 24)))



A group of functions can “conspire” with each other. What we 
want is to define our own cons, car, and cdr functions:

(car (cons a b))    a 
(cdr (cons a b))    b

(define (cons a b) 
  (lambda (selector) 
    (if selector a b))) 

(define (car p) (p #t)) 

(define (cdr p) (p #f))

The cons-car-cdr Conspiracy
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• Section 2.1.3 “mind boggling” definition
• We don’t need Booleans or cond or if!

The cons-car-cdr Conspiracy

(define (cons a b) 
  (lambda (selector) 
    (selector a b))) 

(define (car p) 
  (p (lambda (a b) a))) 

(define (cdr p) 
  (p (lambda (a b) b)))


