
• Today:
- Environment encapsulation
- More higher-order procedures: Fixed points
- Language typing
- Dotted-tail notation

• Readings:
- Finish SICP 2.2–2.4
- Read SICP 2.5, 3.1, 3.2

CSE130, Summer Session II

Lecture 5 — August 17, 2015

1

2

A lambda remembers the values of the variables in its
environment:

Lambdas encapsulate their environment

(define (make-adder a)
 (lambda (n) (+ n a)))

(define successor (make-adder 1))
(define add-5 (make-adder 5))

(successor 2)
(add-5 10)
(add-5 (add-5 (successor 24)))

A group of functions can “conspire” with each other. What we
want is to define our own cons, car, and cdr functions:

(car (cons a b)) a
(cdr (cons a b)) b

(define (cons a b)
 (lambda (selector)
 (if selector a b)))

(define (car p) (p #t))

(define (cdr p) (p #f))

The cons-car-cdr Conspiracy

3

4

• Section 2.1.3 “mind boggling” definition
• We don’t need Booleans, cond, nor if!

The cons-car-cdr Conspiracy

(define (cons a b)
 (lambda (selector)
 (selector a b)))

(define (car p)
 (p (lambda (a b) a)))

(define (cdr p)
 (p (lambda (a b) b)))

• A number x is called a fixed point of a function f if x satisfies
the equation f(x) = x.
- E.g.,: sin(0) = 0, cos(0.73908513321) = 0.73908513321
- E.g.,: abs(x) for all non-negative x

• For some functions f we can locate a fixed point by making an
initial guess and applying f repeatedly…
f(x)
f(f(x))
f(f(f(x)))
f(f(f(f(x)))) …

• …until the value doesn’t change by some small number

Fixed points

5

6

• Apply f to the guess to get next
- if | guess – next | < tolerance, you’ve found it
- Otherwise, keep on looking with next as the new guess

Finding fixed points
(define tolerance 0.00001)

(define (fixed-point f first-guess)
 (let loop ([guess first-guess])
 (let ([next (f guess)])
 (if (< (abs (- guess next)) tolerance)
 next
 (loop next)))))

7

• The square root of n is the x such that x2 = n
- In other words, an x such that x = n / x
- E.g., the square root of 5 is the x where x = 5 / x

• So, let f(x) = 5 / x

• Thus, we want the x such that x = f(x)
• In other words, we want to find the fixed point of this f

Square roots

8

• Our first attempt… 
 
 
 
 
doesn’t converge.

• E.g., (sqrt 5) will just keep repeating 1 and then 5 and then
1… as the guesses:
- f(1) = 5
- f(f(1)) = f(5) = 1

Square roots

(define (sqrt n)
 (fixed-point (lambda (x) (/ n x)) 1.0))

9

• Solution: Don’t let the guesses change so much. Instead, try
the average of the previous guess with the new guess

• This leads to finding the fixed point of a different function:

Square roots, continued

(define (average x y)
 (/ (+ x y) 2))

(define (sqrt n)
 (fixed-point
 (lambda (x) (average x (/ n x)))
 1.0))

> (sqrt 5)
2.236067977499978
> (* 2.236067977499978 2.236067977499978)
5.000000000000843

10

This average dampening technique can be useful for other
cases. Abstract it and we get a procedure that takes a procedure
as input and returns a new procedure!

Square roots, continued

; (number -> number) -> (number -> number)
(define (average-damp f)
 (lambda (x)
 (average x (f x))))

; number -> number
(define (sqrt n)
 (fixed-point
 (average-damp
 (lambda (x) (/ n x)))
 1.0))

11

• Use the output functions display and newline:

Debugging the process

(define (fixed-point f first-guess)
 (let loop ([guess first-guess])
 (display guess)
 (newline)
 (let ([next (f guess)])
 (if (< (abs (- guess next)) tolerance)
 next
 (loop next)))))

> (sqrt 5)
1.0
3.0
2.3333333333333335
2.238095238095238
2.2360688956433634
2.236067977499978

12

• This higher-order procedure takes two procedures as input:

compose

; (number -> number), (number -> number), number -> number
(define (compose f g x)
 (f (g x)))

(compose square double 3)
(square (double 3))
(square (* 2 3))
(square 6)
(* 6 6)
36

13

• But the body of compose itself doesn’t require x to be a
number, nor f and g to be functions on numbers!

compose

(define (compose f g x)
 (f (g x)))

(compose
 (lambda (p) (if p "yin" "yang"))
 (lambda (x) (> x 0))
 -5)
 "yang"

• What is the type of f? g? x? the result?

14

• But not every combination of functions can be composed:

compose

> (compose < square 5)
<: arity mismatch;
 the expected number of arguments does not match the
given number
 expected: at least 2
 given: 1
 arguments.:

> (compose square double "tofu")
+: contract violation
 expected: number?
 given: "tofu"
 argument position: 1st
 other arguments.:

15

• x can be of any type, let’s call that type C
• This is known as a type variable:

- All places where a given type variable appears must match when
you fill in the actual operand types

• Constraints:
- f and g must be functions of one argument
- the argument type of g matches the type of x (what we call C)
- the argument type of f matches the result type of g (call it A)
- the result type of compose is the result type of f (call it B)

• So: 
compose: (A -> B), (C -> A), C -> B

Typing compose
(define (compose f g x) (f (g x)))

16

Common to see in some Lisp code, so you should be aware of it:

“cader” and “caduder”

(define (cadr lst) (compose car cdr lst))
(define (caddr lst) (compose cadr cdr lst))

; o: (B -> C), (A -> B) -> (A -> C)
(define (o f g)
 (lambda (x) (compose f g x)))

(define cadr (o car cdr))

(define caddr (o car (o cdr cdr)))

Alternative formulation:

17

• A useful higher-order expression for its side effects (e.g., I/O)
instead of the value it returns:

The for-each procedure

(define (for-each proc lst)
 (if (not (null? lst))
 (begin
 (proc (car lst))
 (for-each proc (cdr lst)))))

• This implementation demonstrates the “one-armed-if” and
begin special forms.

• In Racket, there is no one-armed-if, so just supply some value

> (for-each (lambda (x) (display x) (newline))
 (list 57 321 88))
57
321
88

18

• With static typing, the type of every expression can be known
by analyzing the program
- Under type checking, the types are explicitly supplied by the

programmer (e.g., Java)
- Under type inference, the types can be deduced based on how

expressions are used.

• Type inference in ML:
- if the + operator is used on a, then a must be an integer
- if b is initialized by the result of f, then it has the same type of what f

returns
- If c is passed as the first argument to g, then it has the same type as

g’s first parameter

• Lambdas in Java 8 employ type inference

Static typing

19

• Under dynamic or latent typing, the types of (some)
expressions can only be determined by executing specific
instances of them at runtime
- In some implementations, every value has a “tag” associated with it,

indicating its type (e.g., Scheme)
- Programmer does not need to specify types
- When an operation is applied, the tags of its operands are checked

to see if the operation is allowed.
- Might only be caught on a primitive procedure, if the user-defined

procedure doesn’t check

• You can write this in Scheme, but not in ML:

Dynamic typing

(define (foo n)
 (if (< n 0) (- n) foo))

20

• An untyped language offers no safety
- E.g. in Assembly a floating-point number can be added to an address
- C/C++ are statically typed, but you can subvert the type system

explicitly (type casting) and implicitly (dangling pointers)

• When something “goes wrong” in an untyped language all bets
are off: whatever happens is not defined and it depends upon
the OS/hardware

• Both statically typed and dynamically typed languages can be
type safe by fully defining the semantics for all scenarios

• Note: The phrases “strong typed” and “weak typed” are
meaningless in the sense there are multiple and conflicting
definitions for them.

Languages without typing

21

• Procedures like + and list have variable arity: they can take
different numbers of arguments

• You can put a dot ‘.’ before the final parameter name in a
procedure definition to be a list that will be a list of remaining
arguments:

Dotted-tail notation

(define (same-parity first . rest)
 ...)

> (same-parity 2 3 4 5 6 7 8)
'(2 4 6 8)
> (same-parity 1 2 3 4 5 6 7 8 9 10 11 12)
'(1 3 5 7 9 11)

22

Using dotted-tail notation

(define (same-parity first . rest)
 (let iter ([lst (cons first rest)])
 (cond
 [(null? lst) '()]
 [(equal? (even? first) (even? (car lst)))
 (cons (car lst) (iter (cdr lst)))]
 [else (iter (cdr lst))])))

23

• Works for lambdas too, but there must be another parameter
before the dot:

Dotted-tail notation with lambda

• But you can handle this case by omitting the parenthesis:

(define same-parity
 (lambda (first . rest) ...)) ;; OK

(define print-all
 (lambda (. lst) ...)) ;; illegal use of '.'

(define print-all
 (lambda lst
 (let iter ([lst lst])
 (if (not (null? lst))
 (begin
 (display (car lst))
 (newline)
 (iter (cdr lst)))
 'done))))

24

• Can this only be implemented with a special form?

The list procedure
> (list) '()

> (list 1 2 3) '(1 2 3)

> (list 4 (list 25 16)) '(4 (25 16))

(define (list . x)

25

• What if we want to call ourselves directly?

A problem with recursive calls

(define (print-all . lst)
 (if (not (null? lst))
 (begin
 (display (car lst))
 (newline)
 (print-all (cdr lst)))
 'done))

• What happens?

(print-all 1 2 3)

26

• One fix is to add indirection, like the original version:

Adding indirection

(define (print-all . lst)
 (let loop ([lst lst])
 (if (not (null? lst))
 (begin
 (display (car lst))
 (newline)
 (loop (cdr lst)))
 'done)))

> (print-all 1 2 3)
1
2
3

27

• We want the elements of the list to be the direct arguments,
and not have the list itself be a single argument.

• The apply procedure takes a procedure and a list and applies
procedure to the elements of the list as arguments:

Using apply

> (apply + (list 1 2 3 4))

 10

> (apply < (list 4 5))

 #t

> (apply list (list 2 3))

 '(2 3)

28

• Still tail-recursive, because apply is the last thing it does!

Calling recursively via apply

(define (print-all . lst)
 (if (not (null? lst))
 (begin
 (display (car lst))
 (newline)
 (apply print-all (cdr lst)))
 'done))

> (print-all 1 2 3)
1
2
3 ;; Still Works!

