
• Today:
- Environment encapsulation 
- More higher-order procedures: Fixed points 
- Language typing 
- Dotted-tail notation 

• Readings:
- Finish SICP 2.2–2.4 
- Read SICP 2.5, 3.1, 3.2
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A lambda remembers the values of the variables in its 
environment:

Lambdas encapsulate their environment

(define (make-adder a) 
  (lambda (n) (+ n a))) 

(define successor (make-adder 1)) 
(define add-5 (make-adder 5)) 

(successor 2) 
(add-5 10) 
(add-5 (add-5 (successor 24)))



A group of functions can “conspire” with each other. What we 
want is to define our own cons, car, and cdr functions:

(car (cons a b))    a 
(cdr (cons a b))    b

(define (cons a b) 
  (lambda (selector) 
    (if selector a b))) 

(define (car p) (p #t)) 

(define (cdr p) (p #f))

The cons-car-cdr Conspiracy
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• Section 2.1.3 “mind boggling” definition
• We don’t need Booleans, cond, nor if!

The cons-car-cdr Conspiracy

(define (cons a b) 
  (lambda (selector) 
    (selector a b))) 

(define (car p) 
  (p (lambda (a b) a))) 

(define (cdr p) 
  (p (lambda (a b) b)))



• A number x is called a fixed point of a function f if x satisfies 
the equation f(x) = x.
- E.g.,: sin(0) = 0, cos(0.73908513321) = 0.73908513321 
- E.g.,: abs(x) for all non-negative x

• For some functions f we can locate a fixed point by making an 
initial guess and applying f repeatedly…
f(x)
f(f(x))
f(f(f(x)))
f(f(f(f(x)))) …

• …until the value doesn’t change by some small number

Fixed points
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• Apply f to the guess to get next
- if  | guess – next | < tolerance, you’ve found it 
- Otherwise, keep on looking with next as the new guess

Finding fixed points
(define tolerance 0.00001) 

(define (fixed-point f first-guess) 
  (let loop ([guess first-guess]) 
    (let ([next (f guess)]) 
      (if (< (abs (- guess next)) tolerance) 
          next 
          (loop next)))))
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• The square root of n is the x such that x2 = n
- In other words, an x such that x = n / x 
- E.g., the square root of 5 is the x where x = 5 / x

• So, let f(x) = 5 / x

• Thus, we want the x such that x = f(x)
• In other words, we want to find the fixed point of this f

Square roots
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• Our first attempt… 
 
 
 
 
doesn’t converge.

• E.g., (sqrt 5) will just keep repeating 1 and then 5 and then 
1… as the guesses:
- f(1) = 5
- f(f(1)) = f(5) = 1

Square roots

(define (sqrt n) 
  (fixed-point (lambda (x) (/ n x)) 1.0))
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• Solution: Don’t let the guesses change so much. Instead, try 
the average of the previous guess with the new guess

• This leads to finding the fixed point of a different function:

Square roots, continued

(define (average x y) 
  (/ (+ x y) 2)) 

(define (sqrt n) 
  (fixed-point 
   (lambda (x) (average x (/ n x))) 
   1.0))

> (sqrt 5) 
2.236067977499978 
> (* 2.236067977499978 2.236067977499978) 
5.000000000000843
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This average dampening technique can be useful for other 
cases. Abstract it and we get a procedure that takes a procedure 
as input and returns a new procedure!

Square roots, continued

; (number -> number) -> (number -> number) 
(define (average-damp f) 
  (lambda (x) 
    (average x (f x)))) 

; number -> number 
(define (sqrt n) 
  (fixed-point 
   (average-damp 
    (lambda (x) (/ n x))) 
   1.0))
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• Use the output functions display and newline:

Debugging the process

(define (fixed-point f first-guess) 
  (let loop ([guess first-guess]) 
    (display guess) 
    (newline) 
    (let ([next (f guess)]) 
      (if (< (abs (- guess next)) tolerance) 
          next 
          (loop next)))))

> (sqrt 5) 
1.0 
3.0 
2.3333333333333335 
2.238095238095238 
2.2360688956433634 
2.236067977499978
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• This higher-order procedure takes two procedures as input:

compose

; (number -> number), (number -> number), number -> number 
(define (compose f g x) 
  (f (g x)))

(compose square double 3) 
(square (double 3)) 
(square (* 2 3)) 
(square 6) 
(* 6 6) 
36
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• But the body of compose itself doesn’t require x to be a 
number, nor f and g to be functions on numbers!

compose

(define (compose f g x) 
  (f (g x)))

(compose 
 (lambda (p) (if p "yin" "yang")) 
 (lambda (x) (> x 0)) 
 -5) 
     "yang"

• What is the type of f? g? x? the result?
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• But not every combination of functions can be composed:

compose

> (compose < square 5) 
<: arity mismatch; 
 the expected number of arguments does not match the 
given number 
  expected: at least 2 
  given: 1 
  arguments.:

> (compose square double "tofu") 
+: contract violation 
  expected: number? 
  given: "tofu" 
  argument position: 1st 
  other arguments.:



15

• x can be of any type, let’s call that type C
• This is known as a type variable:

- All places where a given type variable appears must match when 
you fill in the actual operand types 

• Constraints:
- f and g must be functions of one argument 
- the argument type of g matches the type of x (what we call C) 
- the argument type of f matches the result type of g (call it A) 
- the result type of compose is the result type of f (call it B) 

• So: 
compose: (A -> B), (C -> A), C -> B

Typing compose
(define (compose f g x) (f (g x)))
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Common to see in some Lisp code, so you should be aware of it:

“cader” and “caduder”

(define (cadr lst) (compose car cdr lst)) 
(define (caddr lst) (compose cadr cdr lst))

; o: (B -> C), (A -> B) -> (A -> C) 
(define (o f g) 
  (lambda (x) (compose f g x))) 

(define cadr (o car cdr)) 

(define caddr (o car (o cdr cdr)))

Alternative formulation:
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• A useful higher-order expression for its side effects (e.g., I/O) 
instead of the value it returns:

The for-each procedure

(define (for-each proc lst) 
  (if (not (null? lst)) 
      (begin 
        (proc (car lst)) 
        (for-each proc (cdr lst)))))

• This implementation demonstrates the “one-armed-if” and 
begin special forms.

• In Racket, there is no one-armed-if, so just supply some value

> (for-each (lambda (x) (display x) (newline)) 
            (list 57 321 88)) 
57 
321 
88
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• With static typing, the type of every expression can be known 
by analyzing the program
- Under type checking, the types are explicitly supplied by the 

programmer (e.g., Java) 
- Under type inference, the types can be deduced based on how 

expressions are used. 

• Type inference in ML:
- if the + operator is used on a, then a must be an integer 
- if b is initialized by the result of f, then it has the same type of what f 

returns 
- If c is passed as the first argument to g, then it has the same type as 

g’s first parameter 

• Lambdas in Java 8 employ type inference

Static typing



19

• Under dynamic or latent typing, the types of (some) 
expressions can only be determined by executing specific 
instances of them at runtime
- In some implementations, every value has a “tag” associated with it, 

indicating its type (e.g., Scheme) 
- Programmer does not need to specify types 
- When an operation is applied, the tags of its operands are checked 

to see if the operation is allowed. 
- Might only be caught on a primitive procedure, if the user-defined 

procedure doesn’t check 

• You can write this in Scheme, but not in ML:

Dynamic typing

(define (foo n) 
  (if (< n 0) (- n) foo))
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• An untyped language offers no safety
- E.g. in Assembly a floating-point number can be added to an address 
- C/C++ are statically typed, but you can subvert the type system 

explicitly (type casting) and implicitly (dangling pointers) 

• When something “goes wrong” in an untyped language all bets 
are off: whatever happens is not defined and it depends upon 
the OS/hardware

• Both statically typed and dynamically typed languages can be 
type safe by fully defining the semantics for all scenarios

• Note: The phrases “strong typed” and “weak typed” are 
meaningless in the sense there are multiple and conflicting 
definitions for them.

Languages without typing
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• Procedures like + and list have variable arity: they can take 
different numbers of arguments

• You can put a dot ‘.’ before the final parameter name in a 
procedure definition to be a list that will be a list of remaining 
arguments:

Dotted-tail notation

(define (same-parity first . rest) 
  ...)

> (same-parity 2 3 4 5 6 7 8) 
'(2 4 6 8) 
> (same-parity 1 2 3 4 5 6 7 8 9 10 11 12) 
'(1 3 5 7 9 11)
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Using dotted-tail notation

(define (same-parity first . rest) 
  (let iter ([lst (cons first rest)]) 
    (cond 
      [(null? lst) '()] 
      [(equal? (even? first) (even? (car lst))) 
       (cons (car lst) (iter (cdr lst)))] 
      [else (iter (cdr lst))])))
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• Works for lambdas too, but there must be another parameter 
before the dot:

Dotted-tail notation with lambda

• But you can handle this case by omitting the parenthesis:

(define same-parity 
  (lambda (first . rest) ...)) ;; OK 

(define print-all 
  (lambda (. lst) ...)) ;; illegal use of '.'

(define print-all 
  (lambda lst 
    (let iter ([lst lst]) 
      (if (not (null? lst)) 
          (begin 
            (display (car lst)) 
            (newline) 
            (iter (cdr lst))) 
          'done))))
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• Can this only be implemented with a special form?

The list procedure
> (list)    '() 

> (list 1 2 3)    '(1 2 3) 

> (list 4 (list 25 16))    '(4 (25 16))

(define (list . x) 
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• What if we want to call ourselves directly?

A problem with recursive calls

(define (print-all . lst) 
  (if (not (null? lst)) 
      (begin 
        (display (car lst)) 
        (newline) 
        (print-all (cdr lst))) 
      'done))

• What happens?

(print-all 1 2 3)
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• One fix is to add indirection, like the original version:

Adding indirection

(define (print-all . lst) 
  (let loop ([lst lst]) 
    (if (not (null? lst)) 
        (begin 
          (display (car lst)) 
          (newline) 
          (loop (cdr lst))) 
        'done)))

> (print-all 1 2 3) 
1 
2 
3
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• We want the elements of the list to be the direct arguments, 
and not have the list itself be a single argument.

• The apply procedure takes a procedure and a list and applies 
procedure to the elements of the list as arguments:

Using apply

> (apply + (list 1 2 3 4))  

                           10 

> (apply < (list 4 5)) 

                           #t 

> (apply list (list 2 3)) 

                           '(2 3)
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• Still tail-recursive, because apply is the last thing it does!

Calling recursively via apply

(define (print-all . lst) 
  (if (not (null? lst)) 
      (begin 
        (display (car lst)) 
        (newline) 
        (apply print-all (cdr lst))) 
      'done))

> (print-all 1 2 3) 
1 
2 
3  ;; Still Works!


