Lecture 5 — August 17, 2015

* Today:
- Environment encapsulation
- More higher-order procedures: Fixed points
- Language typing
- Dotted-tail notation
* Readings:
- Finish SICP 2.2-2 .4
- Read SICP2.5,3.1,3.2

CSE130, Summer Session 11

Lambdas encapsulate their environment

A lambda remembers the values of the variables in its
environment:

(define (make-adder a)
(lambda (n) (+ n a)))

(define successor (make-adder 1))
(define add-5 (make-adder 5))

(successor 2)
(add-5 10)
(add-5 (add-5 (successor 24)))

The cons-car-cdr Conspiracy

(car (cons a b))—#a
(cdr (cons a b))¥%b

A group of functions can “conspire” with each other. What we
want is to define our own cons, car, and cdr functions:

(define (cons a b)
(lambda (selector)
(if selector a b)))
(define (car p) (p #t))

(define (cdr p) (p #f))

The cons-car-cdr Conspiracy

» Section 2.1.3 “mind boggling” definition
« We don’t need Booleans, cond, nor 1 f!

(define (cons a b)
(lambda (selector)
(selector a b)))

(define (car p)
(p (Lambda (a b) a)))

(define (cdr p)
(p (Lambda (a b) b)))

FIxed points

* Anumber x is called a fixed point of a function fif x satisfies
the equation f{x) = x.

- E.g.,: sin(0) =0, cos(0.73908513321) = 0.73908513321
- E.g.,: abs(x) for all non-negative x

* For some functions fwe can locate a fixed point by making an
Initial guess and applying f repeatedly...

fix)
() | mec | m+ | m- | mr| AC | £ | %
J{(x)) R 7 s | s
GGE)) ‘HooOnonn
x| sin | cos | tan e EE 1 2 g
f(f(f(f(X)))) oo o Deg | sinh [cosh | tanh m |Rand| QO

* ...until the value doesn’t change by some small number

Finding fixed points

(define tolerance 0.00001)

(define (fixed-point f first-guess)
(let loop ([guess first-guess])
(let ([next (f guess)])
(1f (< (abs (- guess next)) tolerance)
next
(Lloop next)))))

* Apply f to the guess to get next
- if | guess — next| < tolerance, you've found it

- Otherwise, keep on looking with next as the new guess

Sqguare roots

The square root of n is the x such that x2=n
- In other words, an x suchthatx=n/x

- E.g., the square root of S isthe x where x =5/ x

So, let fix)=5/x

Thus, we want the x such that x = f(x)
In other words, we want to find the fixed point of this f

Sqguare roots

* Our first attempt...

(define (sqrt n)
(fixed-point (lambda (x) (/ n x)) 1.0))

doesn’t converge.

* E.g., (sqrt 5) will just keep repeating 1 and then 5 and then
1... as the guesses:

- i) =5
- ff1) =f5) =1

Sqguare roots, continued

« Solution: Don't let the guesses change so much. Instead, try
the average of the previous guess with the new guess

* This leads to finding the fixed point of a different function:

(define (average x y)

(/ (+ xy) 2))

(define (sqrt n)
(fixed-point
(lambda (x) (average x (/ n x)))
1.0))

> (sqrt 5)

2.236067977499978

> (* 2.236067977499978 2.236067977499978)
5.000000000000843

Sqguare roots, continued

This average dampening technique can be useful for other
cases. Abstract it and we get a procedure that takes a procedure
as input and returns a new procedure!

s (number -> number) -> (number -> number)
(define (average-damp f)
(lambda (x)
(average x (f x))))

; humber -> number
(define (sqgqrt n)
(fixed-point
(average—-damp
(lambda (x) (/ n x)))
1.0))

Debugging the process

« Use the output functions display and newline:

(define (fixed-point f first-guess)
(let loop ([guess first-guess])
(display guess)
(newline)
(let ([next (f guess)])
(if (< (abs (- guess next)) tolerance)
next

(loop next)))))

(sqrt 5)

.0

.0
.3333333333333335
.238095238095238
.2360688956433634
.236067977499978

NNMNNMNMNMNMNWR YV

compose

* This higher-order procedure takes two procedures as input:

; (number -> number), (number -> number), number -> number
(define (compose f g x)

(f (g x)))

(compose square double 3)
(square (double 3))
(square (*x 2 3))

(square 6)

(x 6 6)

36

12

compose

« But the body of compose itself doesn’t require x to be a
number, nor f and g to be functions on numbers!

(define (compose f g x)

(f (g x)))

(compose

(Lambda (p) (if p "yin" "yang"))
(lambda (x) (> x 0))

_5)

~p "yang"

* What is the type of f? g? x? the result?

13

compose

* But not every combination of functions can be composed:

> (compose < square 5)
<: arity mismatch;
the expected number of arguments does not match the
given number
expected: at least 2
given: 1
arguments.:

> (compose square double "tofu")
+: contract violation

expected: number?

given: "tofu"

argument position: 1st

other arguments.:

14

Typing compose

(define (compose f g x) (f (g x)))

x can be of any type, let’s call that type C

This is known as a type variable:

- All places where a given type variable appears must match when
you fill in the actual operand types

Constraints:

- f and g must be functions of one argument

- the argument type of g matches the type of x (what we call C)
- the argument type of f matches the result type of g (call it A)
- the result type of compose is the result type of f (call it B)

So:
compose: (A -> B), (C -> A), C -> B

15

‘cader” and “caduder”’

Common to see in some Lisp code, so you should be aware of it:

(define (cadr 1st) (compose car cdr 1st))
(define (caddr 1lst) (compose cadr cdr 1lst))

Alternative formulation:

s o: (B ->C), (A->B) > (A ->C)
(define (o f g)
(lambda (x) (compose f g x)))

(define cadr (o car cdr))

(define caddr (o car (o cdr cdr)))

16

The for—-each procedure

* A useful higher-order expression for its side effects (e.g., 1/O)
iInstead of the value it returns:

(define (for-each proc lst)
(if (not (null? 1st))
(begin
(proc (car 1lst))
(for-each proc (cdr 1lst)))))

> (for-each (lambda (x) (display x) (newline))
(list 57 321 88))

57

321

88

* This implementation demonstrates the “one-armed-if’ and
begin special forms.

* In Racket, there is no one-armed-if, so just supply some value

17

Static typing

* With static typing, the type of every expression can be known
by analyzing the program

- Under type checking, the types are explicitly supplied by the
programmer (e.g., Java)

- Under type inference, the types can be deduced based on how
expressions are used.

* Type inference in ML.:
- if the + operator is used on a, then a must be an integer

- if b is initialized by the result of f, then it has the same type of what f
returns

- If ¢ is passed as the first argument to g, then it has the same type as
g’s first parameter

« Lambdas in Java 8 employ type inference

18

Dynamic typing

* Under dynamic or latent typing, the types of (some)
expressions can only be determined by executing specific
iInstances of them at runtime

In some implementations, every value has a “tag” associated with it,
indicating its type (e.g., Scheme)

Programmer does not need to specity types

When an operation is applied, the tags of its operands are checked
to see if the operation is allowed.

Might only be caught on a primitive procedure, if the user-defined
procedure doesn’'t check

* You can write this in Scheme, but not in ML:

(define (foo n)
(if (< n ©®) (- n) foo))

19

L anguages without typing

An untyped language ofters no safety

- E.g. in Assembly a floating-point number can be added to an address

- C/C++ are statically typed, but you can subvert the type system
explicitly (type casting) and implicitly (dangling pointers)

When something “goes wrong” in an untyped language all bets
are off: whatever happens is not defined and it depends upon
the OS/hardware

Both statically typed and dynamically typed languages can be
type safe by fully defining the semantics for all scenarios

Note: The phrases “strong typed” and “weak typed” are
meaningless in the sense there are multiple and conflicting
definitions for them.

20

Dotted-tall notation

* Procedures like + and 11st have variable arity: they can take
different numbers of arguments

* You can put a dot ‘.’ before the final parameter name in a
procedure definition to be a list that will be a list of remaining
arguments:

(define (same-parity first . rest)

o)

> (same-parity 2 3 45 6 7 8)

'(2 4 6 8)

> (same-parity 1 2 3456 7 8 9 10 11 12)
'(1 357 9 11)

21

Using dotted-tail notation

(define (same-parity first . rest)
(let iter ([lst (cons first rest)])
(cond
[(null? 1st) '()]
[(equal? (even? first) (even? (car 1lst)))
(cons (car 1st) (iter (cdr 1st)))]
[else (1ter (cdr 1st))])))

22

Dotted-tall notation with Lambda

* Works for lambdas too, but there must be another parameter
before the dot:

(define same-parity
(lambda (first . rest) ...)) 55 OK

(define print-all
(lambda (. 1lst) ...)) ;3 illegal use of '.'

* But you can handle this case by omitting the parenthesis:

(define print-all
(lambda 1st
(let 1ter ([lst 1lst])
(if (not (null? 1lst))

(begin
(display (car 1lst))
(newline)
(iter (cdr 1lst)))

'done))))

23

The 1i1st procedure

> (List)—'()
> (List 1 2 3)—%'(1 2 3)
> (Llist 4 (Llist 25 16))—'(4 (25 16))

» Can this only be implemented with a special form?

(define (list . x)

A problem with recursive calls

* What if we want to call ourselves directly?

(define (print-all . 1lst)
(if (not (null? 1st))
(begin
(display (car 1st))
(newline)
(print-all (cdr 1st)))
'done))

* What happens?

(print-all 1 2 3)

25

Adding indirection

* One fix is to add indirection, like the original version:

(define (print-all . 1lst)
(let loop ([1lst 1st])
(if (not (null? 1st))
(begin
(display (car 1lst))
(newline)
(loop (cdr 1st)))
'done)))

(print-all 1 2 3)

>
1
2
3

Using apply
* We want the elements of the list to be the direct arguments,

and not have the list itself be a single argument.

 The apply procedure takes a procedure and a list and applies
procedure to the elements of the list as arguments:

> (apply + (list 1 2 3 4))
——fp 10

> (apply < (list 4 5))
~P #t

> (apply list (list 2 3))
~pp 1 (2 3)

27

Calling recursively via apply

- Still tail-recursive, because apply is the last thing it does!

(define (print-all . 1lst)
(if (not (null? 1st))
(begin
(display (car 1st))
(newline)
(apply print-all (cdr 1st)))
'"done))

(print-all 1 2 3)

>
1
2
3

;5 Still Works!

28

