
• Today:
- Continuations
- Continuation Passing Style

• Readings:
- TSPL4 (Dybvig) 3.3, 3.4

(http://www.scheme.com/
tspl4/)

CSE130, Summer Session II
Some slides from Matt Might, University of Utah, matt.might.net, with permission.

Lecture 8 — August 26, 2015

1

• Next Week:
- Lambdas and streams in Java 8
- Asynchronous JavaScript (Node.js)
- Declarative programming
- SICP 3.5 [for a treatment of streams in Scheme]
- SICP 4.4 [logical programming]

2

• A callback is when an earlier joke is referenced
• We can “return” two values by accepting a callback:

Using callbacks to return values
(define (car&cdr pair)
 (list (car pair) (cdr pair)))

> (car&cdr '(2 4 6 8))
'(2 (4 6 8))

• Two values can be returned by returning a list:

(define (car&cdr/callback pair receive)
 (receive (car pair) (cdr pair)))

> (car&cdr/callback '(2 4 6 8) (lambda (x y)
 (map (lambda (v) (* v x)) y)))
'(8 12 16)
> (car&cdr/callback '(2 . 3) (lambda (a d)
 (display (+ d a)) (newline)))
5
> (car&cdr/callback '(2 . 3) list)
'(2 3)

3

Using callbacks to return values
(define (car&cdr/callback pair receive)
 (receive (car pair) (cdr pair)))

(define (sum/callback nums cb)
 (cb (apply + nums)))

(define (cons/callback a b cb)
 (cb (cons a b)))

> (sum/callback (list 3 1 4 1 5 9) display)
23
> (cons/callback #\h '(#\i) list->string)
"hi"
> (car&cdr/callback (cons 2 5) *)
10
> (car&cdr/callback (cons 2 5) +)
7
> (car&cdr/callback (cons 2 5) /)
2/5
> (let ([snoc (lambda (a b) (cons b a))])
 (car&cdrw/callback (cons 2 5) snoc))
'(5 . 2)

4

“It is the evaluation of actual parameters, not the calling of procedures,
that requires creating a control context.” —Friedman, et al, EoPL, 2001

Control context

(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2))
(* 4 (* 3 (* 2 (fact 1))))
(* 4 (* 3 (* 2 (* 1 (fact 0)))))
(* 4 (* 3 (* 2 (* 1 1))))
24

(fact 4)
(ifact 4 1)
(ifact 3 4)
(ifact 2 12)
(ifact 1 24)
(ifact 0 24)
24

• Recursive fact is invoked in larger and larger control
contexts: This is “the stack” that grows.

5

• Similar to how an
environment abstracts data
contexts, a continuation
abstracts control contexts.
- An environment is a collection

of names that are associated
with locations.

- A continuation of an
expression is: a procedure
that takes the result of the
expression and completes the
computation

• A continuation represents a
suspended computation,
waiting for a value.

• These phrasings by Matt
Might are also helpful:
- A continuation is like a saved game.
- They’re like time travel.
- The program stack encodes the current

continuation.
- The state of a thread is a continuation.
- A continuation is a procedure that never

returns to its caller.
- Exceptions are a special case of

continuations.
- A continuation is a first-class encoding

of control.

Continuations

6

• The call/cc procedure is passed another procedure, p, that
has one argument, k.

• call/cc obtains the current continuation and applies p to it.
- Thus, it doesn’t “return” the current continuation, rather
- k is the continuation, and we access it from p.

• Each time k is applied to a value (if it is ever applied at all):
- it returns that value to the continuation,
- becoming the value of the application of the original call/cc.

• If p returns without invoking k, the value returned by p
becomes the value of call/cc.

The call/cc primitive

7

Some examples
> (call/cc
 (lambda (k)
 (* 5 4)))
20
> (call/cc
 (lambda (k)
 (* 5 (k 4))))
4
> (+ 2
 (call/cc
 (lambda (k)
 (* 5 (k 4)))))
6

8

• Take the product of a list of numbers: [TSPL4, Dybvig]

Non-local exit

(define (product ls)
 (call/cc
 (lambda (break)
 (let f ([ls ls])
 (cond
 [(null? ls) 1]
 [(= (car ls) 0) (break 0)]
 [else (* (car ls) (f (cdr ls)))])))))

> (product '(1 2 3 4 5))
120
> (product '(7 3 8 0 19 5))
0

9

• It’s a good job that this isn’t confusing in the least

Continuations can escape
> (let ([x (call/cc (lambda (k) k))])
 x)
#<continuation>

> (let ([x (call/cc (lambda (k) k))])
 (x "Hello, world"))
application: not a procedure;
 expected a procedure that can be applied to arguments
 given: "Hello, world"
 arguments.:

> (let ([x (call/cc (lambda (k) k))])
 (x (lambda (dummy)
 "Hello, world")))
"Hello, world"

10

From Dybvig: “it might be easy to guess what it returns, but it takes
some thought to figure out why.”

“probably the most confusing Scheme program of its size”

> (((call/cc (lambda (k) k)) (lambda (x) x)) "HEY!")
"HEY!"

> (define (id x) x)
> (((call/cc id) id) "HEY!")
"HEY!"

Well, we can try to factor it a little:

“The value of the call/cc is its own continuation […]. This is applied
to the identity procedure (lambda (x) x), so the call/cc returns
a second time with this value. Then, the identity procedure is applied to
itself, yielding the identity procedure. This is finally applied to "HEY!",
yielding "HEY!".”

11

• We can capture a continuation and set a global variable to it:
Factorial

(define retry #f)

(define (factorial n)
 (if (= n 0)
 (call/cc (lambda (k) (set! retry k) 1))
 (* n (factorial (- n 1)))))

> (factorial 4) 24

> (retry 1) 24

> (retry 2) 48

> (retry 5) 120

• But it only works this way in the evaluator!
> (let ()
 (printf "~s " (factorial 4))
 (printf "~s " (retry 5)))
24 120 120 120 120 120 120 120 120 120 …

12

• Calling the continuation does not “turn back time”:
- Any changes to the heap that have happened in the mean time will

remain
- Any I/O that has been performed of course has already happened

Note on time travel, Marty

13

• Find integers x, y, z such that:
- x, y, z are in the range [2, 9]; and
- x2 = y2 + z2

Application: Backtracking

> (let ([x (in-range 2 9)]
 [y (in-range 2 9)]
 [z (in-range 2 9)])
 (if (= (* x x)
 (+ (* y y) (* z z)))
 (list x y z)
 (fail)))
'(5 3 4)

14

Application: Backtracking
(define (fail)
 (error "no solution"))

(define (in-range a b)
 (call/cc
 (lambda (k)
 (enumerate a b k))))

(define (enumerate a b k)
 (if (> a b)
 (fail)
 (let ([save fail])
 (set! fail
 (lambda ()
 (set! fail save)
 (enumerate (+ a 1) b k)))
 (k a))))

15

• Like assignment, Scheme doesn’t actually need call/cc.
• Instead, we can just make the continuations explicit:

Continuation Passing Style

(define (product/cb ls return)
 (let ([break return])
 (let f ([ls ls] [return return])
 (cond
 [(null? ls) (return 1)]
 [(= (car ls) 0) (break 0)]
 [else (f (cdr ls)
 (lambda (x)
 (return (* (car ls) x))))]))))

> (product/cb '(1 2 3) (lambda (v) (display v)))
6
> (display (product '(1 2 3)))
6

16

• We can apply the -/k style to our primitives, too
• In CPS, every function call is in the tail position!
• Factorial function, fully converted to CPS style:

CPS factorial

(define (=/k a b k) (k (= a b)))
(define (-/k a b k) (k (- a b)))
(define (*/k a b k) (k (* a b)))

(define (fact n k) (ifact n 1 k))
(define (ifact n a k)
 (=/k n 0
 (lambda (b)
 (if b
 (k a)
 (-/k n 1
 (lambda (nm1)
 (*/k n a (lambda (nta)
 (ifact nm1 nta k)))))))))

> (fact 42 display)
1405006117752879898543142606244511569936384000000000

