
• Today:
- Declarative Programming
- Unification
- Lambda calculus

• Readings:
- Finish SICP 4.4
- http://docs.racket-lang.org/datalog/datalog.html

CSE130, Summer Session II

Lecture 9 — August 31, 2015

1

• Different way to program: No procedures!
• Math: Declarative Knowledge: What Is

- The definition of a square root:

• CS: Imperative Knowledge: How To
- The algorithm to compute a square root:

2

Logic Programming

(define (sqrt x)
 (let loop ([guess 1.0])
 (if (< (abs (- (square guess) x)) 0.00001)
 guess
 (loop (average guess (/ x guess))))))

(define (square n) (* n n))
(define (average a b) (/ (+ a b) 2))

3

• The relation between Celsius and Fahrenheit:
F – 32 = (9/5)·C

• This formula provides enough information to let us know
how to:
- Convert from Fahrenheit to Celsius; and
- Convert from Celsius to Fahrenheit

• No explicit input or output:
- One piece of declarative knowledge can be used as the basis of

several kinds of how-to knowledge
- E.g., in procedural programming, the sqrt procedure maps

inputs to outputs: “What is the square root of 289?” but you can’t
use it to ask “What is 17 the square root of?”

Logic Programming

4

• Idea: Why not program in declarative terms instead?
- Specify facts (what is true) an let the system figure out the “how to” part

• For example, queries over a Prolog/Datalog database:

Facts and Queries

% Prolog/Datalog Queries:
?- son_of(adam, Who). % Who is Adam the father of?
Who = abel
Who = cain
?- son_of(Who, cain). % Who is Cain’s father?
Who = adam

% Facts:
son_of(adam, abel).
son_of(adam, cain).
son_of(cain, enoch).
son_of(enoch, irad).

• Variables start with Uppercase letters.
• Atoms start with lowercase letters (an atom is like a 'symbol in Lisp)

5

• Instead of stating all facts directly, we can infer other facts
from logical rules:

• Now we can ask:

• Read the “:-” like a backwards implication and the commas as
logical conjunction: (x sonof y ∧ y sonof x) ⇒ x grandsonof y

Prolog/Datalog Rules

% Facts
son_of(adam, abel).
son_of(adam, cain).
son_of(cain, enoch).
son_of(enoch, irad).

% Rules
grandson_of(X, Z) :- son_of(X, Y), son_of(Y, Z).

?- grandson_of(adam, Who). % Who is the grandson of Adam?
Who = enoch
?- grandson_of(Who, irad). % Who is Irad the grandson of?
Who = cain

here, X, Y, and Z
are the variables

6

• We can specify a general relation implied from the facts
and the rules:

Prolog/Datalog Rules

% Facts
son_of(adam, abel). son_of(adam, cain).
son_of(cain, enoch). son_of(enoch, irad).

% Rules
grandson_of(X, Z) :- son_of(X, Y), son_of(Y, Z).
relation(X, Y, son) :- son_of(X, Y).
relation(X, Y, father) :- son_of(Y, X).
relation(X, Y, grandson) :- grandson_of(X, Y).
relation(X, Y, grandfather) :- grandson_of(Y, X).

?- relation(enoch, cain, R). % What is Enoch and Cain’s
R = father % relation?
?- relation(_, X, grandfather). % Who are all of the
X = adam % grandfathers, based on
X = cain % just this information?

• The “_” means “don’t care”

7

• Prolog (but not Datalog), supports lists: The built-in member
predicate can be used to make queries:

Lists in Prolog: member

?- member(a, [a, b, c, d]).
true
?- member(z, [a, b, c, d]).
false
?- member(X, [a, b, c, d]).
X = a
X = b
X = c
X = d
?- member(e, [a, b, X, d]).
X = e

8

• In Prolog, a cons cell is specified using [Head|Tail]
• An empty list is specified with []
• The [Head|Tail] notation doesn’t necessarily create a

cons cell, it can be used to retrieve the head and tail

Lists in Prolog: Cons

?- A=[1, 2], A=[H|R].
A = [1, 2],
H = 1,
R = [2]
?- H=1, R=[2], A=[H|R].
A = [1, 2],
H = 1,
R = [2]
?- X=[4, 8, 16], [XCar|XCdr]=X, [XCadr|_]=XCdr.
X = [4, 8, 16],
XCadr = 8,
XCar = 4,
XCdr = [8, 16]

A is bound first: forces H and R to match

H and R are bound first: forces A to match

9

• Rules state what is true
• When given variables, Prolog’s solver will try to find all

matches for the variables that result in truth

Lists in Prolog: member

member(X, [X|_]).
member(X, [_|Tail]) :- member(X, Tail).

The first rule says:
• If X is the head of the list, then X is a member of the list

The second rule says:
• If X is a member of the tail of the list, then X is a member

of the list

?- member(X, [1, 2]).
X = 1 ;
X = 2.

10

• The built-in append predicate relates three lists:

Lists in Prolog: append

?- append([1], [2], L).
L = [1, 2].

?- append(A, B, [1, 2, 3]).
A = [],
B = [1, 2, 3] ;
A = [1],
B = [2, 3] ;
A = [1, 2],
B = [3] ;
A = [1, 2, 3],
B = [] ;
false.

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

11

• In Scheme, we could describe how to merge the contents
of two lists like so:

Expressing the merge process

(define (merge x y)
 (cond [(null? x) y]
 [(null? y) x]
 [else (let ([a (car x)]
 [b (car y)])
 (if (< a b)
 (cons a (merge (cdr x) y))
 (cons b (merge x (cdr y)))))]))

> (merge '(0 2 4 6 8) '(1 3 5 7 9))
'(0 1 2 3 4 5 6 7 8 9)

12

Let’s look into the logic of the program:

But what is merge, really?

(cond [(null? x) y]
 [(null? y) x] …

• for all y: '() and y merge to y
• for all x: x and '() merge to x

(let ([a (car x)] [b (car y)])
 (if (< a b)
 (cons a (merge (cdr x) y)) …

• if (cdr x) and y merge to Z 
and a < (car y), then 
(cons a (cdr x)) and y merge to (cons a Z).

13

• [3, 6, 9] and [4, 8] merge to What (L)?

Lists in Prolog: merge
?- merge([3, 6, 9], [4, 8], L).
L = [3, 4, 6, 8, 9].

• [1, 3, 5] and What merge to [1, 2, 3, 4, 5]?
?- merge([1, 3, 5], L, [1, 2, 3, 4, 5]).
L = [2, 4].

• What and WhatElse merge to [1, 2, 3, 4, 5, 6]?
?- merge(What, WhatElse, [1, 2, 3, 4, 5, 6]).
This has 26 = 64 answers, not just one!

• Do [1, 3] and [2, 7] merge to [1, 2, 3, 7]?
?- merge([1, 3], [2, 7], [1, 2, 3, 7]).
true.

14

• Need to be careful about forming infinite loops
• Excels in database information retrieval; e.g. query systems
• Excels in domain-specific tasks:

- Yacc is a declarative language: “here is a grammar for a
language” not “here is a parsing procedure.”

- Bddbddb uses Datalog to make queries to Java bytecodes:
“does this field point to values returned by this method?”

Weaknesses and strengths

15

• Matches any three-element list that begins with an a and
ends with a c:
- [a, X, c]

• Matches any three-element list that begins with job, a
second element of anything, and the third is a list of two
elements that begins with computer:
- [job, X, [computer, Y]]

• Matches any three-element list that begins with an a and
whose second and third element can be anything as long
as they are the same as each other:
- [a, X, X]

Pattern matching examples

16

• We can keep track of variable assignments (in order to
maintain consistency) by using frames.

• Match takes in: a pattern, a datum, and a frame.

Pattern matching algorithm

(match (?x ?y ?y ?x) (a b b a) frame) frame: x = a
result: ?y = b

(match pattern-with-question-marks datum frame)

(match (?x ?y ?y ?x) (a b b a) frame) frame: y = a
result: fail

17

Pattern matching algorithm
(define (pattern-match pat dat frame)
 (cond [(eq? frame 'failed) 'failed]
 [(equal? pat dat) frame]
 [(var? pat) (extend-if-consistent pat dat frame)]
 [(and (pair? pat) (pair? dat))
 (pattern-match (cdr pat)
 (cdr dat)
 (pattern-match (car pat)
 (car dat)
 frame))]
 [else 'failed]))

(define (extend-if-consistent var dat frame)
 (let ([binding (binding-in-frame var frame)])
 (if binding
 (pattern-match (binding-value binding) dat frame)
 (extend var dat frame))))

(define (var? exp)
 (tagged-list? exp '?))

18

• Unification is a generalization of pattern matching, where
the datum can have variables too.

Unification

[X, a, Y] = [Y, Z, a]
X = a,
Y = a,
Z = a.

[X, X] = [[a, Y, c], [a, b, Z]]
X = [a, b, c],
Y = b,
Z = c.

[X, a] = [[b, Y], Z]
X = [b, Y],
Z = a.

[X, Y, a] = [X, b, Y]
fail

19

Unification algorithm
(define (pattern-match p1 p2 frame)
 (cond [(eq? frame 'failed) 'failed]
 [(equal? p1 p2) frame]
 [(var? p1) (extend-if-possible p1 p2 frame)]
 [(var? p2) (extend-if-possible p2 p1 frame)]
 [(and (pair? p1) (pair? p2))
 (unify-match (cdr p1) (cdr p2)
 (unify-match (car p1) (car p2) frame))]
 [else 'failed]))

(define (extend-if-possible var val frame)
 (let ([binding (binding-in-frame var frame)])
 (cond [binding
 (unify-match (binding-value binding) val frame)]
 [(var? val)
 (let ([binding (binding-in-frame val frame)])
 (if binding
 (unify-match var (binding-value binding) frame)
 (extend var val frame))))
 [(depends-on? val var frame) 'failed]
 [else (extend var val frame)])

20

• Developed in 1930’s by Alonzo Church and his students
• Studied in logic and computer science
• Church Thesis: “Effectively calculable functions from positive

integers to positive integers are just those definable in the
lambda calculus.”

• Alan Turing around the same time developed Turing Machines,
shown to be equivalent to lambda calculus.

The Lambda Calculus

21

• The only values are functions that take a single argument
• Normal order semantics

Expression → Id
Expression → (lambda Id . Expression)
Expression → (Expression Expression)

• We’ll abbreviate lambda as λ.
• We sometimes omit the parenthesis, in which case:

- Application associates to the left:  
x y means (x y) 
x y z means ((x y) z)

- Abstraction extends to the right, as far as possible:  
λx.x λy.x y means λx.(x (λy.x y) 
λx.x λy.x y z means λx.(x (λy.((x y) z)))

The Lambda Calculus

22

• Let’s define:
1. The identity function: 

 

2. A function that, given an argument y, discards it, and returns
the identity function: 
 

3. A function that, given a function f, invokes it on the identity
function:

The identity function

23

• To define meaningful cons, +, * operations we’ll need to
simulate multiple arguments.

• Idea: To compute a + b, pass a to a function ⊕ that returns a
function that, when applied to b, returns a + b.
- That is: (+ a b) = ((⊕ a) b)
- What does (⊕ a) return? A function that adds a to its argument!
- E.g., (⊕ 1) is the “increment by 1” function; also known as the
successor function, or succ

Simulating multiple arguments

24

• This simulating-multiple-arguments technique is called
currying, named after Haskell Curry.

• Let’s use currying to define cons: 
 
 

• The conspiracy!

Currying

cons = (λa. (λb.
 (λselector. ((selector a) b))))
 = λa. λb. λselector. (selector a b)

car = λp.(p (λa. λb. a))

cdr = λp.(p (λa. λb. b))

25

• Key Idea: We want to encode the behavior of values.
• E.g., to define Booleans:

- Q: “What can we do with a Boolean?”
- A: “Make a binary choice”
- Q: “How can you view this as a function?”
- A: “A Boolean is a function that takes two choices, returns one”

Make your own Boolean

true = λx. λy. x
false = λx. λy. y

true a b → a
false a b → b

26

• We don’t have to let the “low-level implementation” of Booleans
to be exposed to everyone (e.g., everyone knows which of the
true and false alternatives is first).

• Instead, wrap this detail inside of “if,” which acts like the
Scheme if because λ-calculus has normal order evaluation:

Complete the conspiracy

true = λx. λy. x
false = λx. λy. y
if = λp. λthen. λelse. (p then else)

27

• Let’s define:
1. Not: Takes in a single argument b, assumed to be a Boolean,

and returns the negation of b: 
 

2. Or: Takes in two Booleans, b and c, and returns true if b or c
are true: 
 

3. And: Takes in two Booleans, b and c, and returns true if b and
c are true:

Boolean logic

28

• Q: “What can we do with a natural number?”
• A: “Iterate a number of times over some function”
• So, a number n can be a function that takes in a function, call it

s, and applies that function to a base value, call it z, n times.
• E.g.:

Church numerals

0 = λs. λz. z /* s applied three times */
1 = λs. λz. (s z) /* s applied once */
2 = λs. λz. (s (s z)) /* s applied twice */
3 = λs. λz. (s (s (s z))) /* s applied three times */

29

• Numbers are functions that make a promise: “If you give me
any zero function z and any successor function s, then I’ll apply
s to z the number of times as the number that I represent.”

• Successor, given n, returns n+1:

• “Let’s apply s to z n times, and then apply s once more.”

Church numerals

succ = λn. (λs. λz. (s (n s z)))

30

• Apply s to z, n times
• Then, apply s to that, m times
• Thus, we could let succ = (plus 1)

• Apply “something” to zero, m times.

• Now, (expt n m) = nm

Addition and multiplication
plus = λn. λm.(λs. λz. (m s (n s z)))
plus = λn. λm.(n succ m)

mult = λn. λm.(m 0))

expt = λn. λm.

Subtraction
• Defined in terms of a predecessor function.
– pred(n) = n – 1 if n > 0
– pred(n) = 0 if n = 0

• We won’t worry about negative numbers,
instead, n – m = 0 if m ≥ n.

subtract = λn. λm.
 (m pred n)

Predecessor

A B

0 0

1 0

2 1

3 2

4 3

nextpair = λp.
 cons (succ (car p)) (car p)

pred = λn.
 cdr (n nextpair (cons zero zero))

• This one is much harder, and stumped logicians for a
while.

• Initialize a, b to 0.
• Repeatedly transform:
–a ! a + 1

–b ! a 

• After the transform is applied n times, b is the
predecessor of n!

• We don’t even need to loop:

