
• Today:
- Declarative Programming 
- Unification 
- Lambda calculus 

• Readings:
- Finish SICP 4.4 
- http://docs.racket-lang.org/datalog/datalog.html
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• Different way to program: No procedures!
• Math: Declarative Knowledge: What Is

- The definition of a square root: 

• CS: Imperative Knowledge: How To
- The algorithm to compute a square root:
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Logic Programming

(define (sqrt x) 
  (let loop ([guess 1.0]) 
    (if (< (abs (- (square guess) x)) 0.00001) 
        guess 
        (loop (average guess (/ x guess)))))) 

(define (square n) (* n n)) 
(define (average a b) (/ (+ a b) 2))
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• The relation between Celsius and Fahrenheit:
F – 32 = (9/5)·C

• This formula provides enough information to let us know 
how to:
- Convert from Fahrenheit to Celsius; and 
- Convert from Celsius to Fahrenheit 

• No explicit input or output:
- One piece of declarative knowledge can be used as the basis of 

several kinds of how-to knowledge 
- E.g., in procedural programming, the sqrt procedure maps 

inputs to outputs: “What is the square root of 289?” but you can’t 
use it to ask “What is 17 the square root of?”

Logic Programming
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• Idea: Why not program in declarative terms instead?
- Specify facts (what is true) an let the system figure out the “how to” part 

• For example, queries over a Prolog/Datalog database:

Facts and Queries

% Prolog/Datalog Queries: 
?- son_of(adam, Who).       % Who is Adam the father of? 
Who = abel 
Who = cain 
?- son_of(Who, cain).       % Who is Cain’s father? 
Who = adam

% Facts: 
son_of(adam, abel). 
son_of(adam, cain). 
son_of(cain, enoch). 
son_of(enoch, irad).

• Variables start with Uppercase letters.
• Atoms start with lowercase letters (an atom is like a 'symbol in Lisp)
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• Instead of stating all facts directly, we can infer other facts 
from logical rules:

• Now we can ask:

• Read the “:-” like a backwards implication and the commas as 
logical conjunction: (x sonof y ∧ y sonof x) ⇒ x grandsonof y

Prolog/Datalog Rules

% Facts 
son_of(adam, abel). 
son_of(adam, cain). 
son_of(cain, enoch). 
son_of(enoch, irad). 

% Rules 
grandson_of(X, Z) :- son_of(X, Y), son_of(Y, Z).

?- grandson_of(adam, Who).  % Who is the grandson of Adam? 
Who = enoch 
?- grandson_of(Who, irad).  % Who is Irad the grandson of? 
Who = cain

here, X, Y, and Z 
are the variables
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• We can specify a general relation implied from the facts 
and the rules:

Prolog/Datalog Rules

% Facts 
son_of(adam, abel). son_of(adam, cain). 
son_of(cain, enoch). son_of(enoch, irad). 

% Rules 
grandson_of(X, Z) :- son_of(X, Y), son_of(Y, Z). 
relation(X, Y, son) :- son_of(X, Y). 
relation(X, Y, father) :- son_of(Y, X). 
relation(X, Y, grandson) :- grandson_of(X, Y). 
relation(X, Y, grandfather) :- grandson_of(Y, X).

?- relation(enoch, cain, R).    % What is Enoch and Cain’s 
R = father                      % relation? 
?- relation(_, X, grandfather). % Who are all of the 
X = adam                        % grandfathers, based on 
X = cain                        % just this information?

• The “_” means “don’t care”
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• Prolog (but not Datalog), supports lists: The built-in member 
predicate can be used to make queries:

Lists in Prolog: member

?- member(a, [a, b, c, d]). 
true 
?- member(z, [a, b, c, d]). 
false 
?- member(X, [a, b, c, d]). 
X = a 
X = b 
X = c 
X = d 
?- member(e, [a, b, X, d]). 
X = e
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• In Prolog, a cons cell is specified using [Head|Tail]
• An empty list is specified with []
• The [Head|Tail] notation doesn’t necessarily create a 

cons cell, it can be used to retrieve the head and tail

Lists in Prolog: Cons

?- A=[1, 2], A=[H|R]. 
A = [1, 2], 
H = 1, 
R = [2] 
?- H=1, R=[2], A=[H|R]. 
A = [1, 2], 
H = 1, 
R = [2] 
?- X=[4, 8, 16], [XCar|XCdr]=X, [XCadr|_]=XCdr. 
X = [4, 8, 16], 
XCadr = 8, 
XCar = 4, 
XCdr = [8, 16]

A is bound first: forces H and R to match

H and R are bound first: forces A to match
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• Rules state what is true
• When given variables, Prolog’s solver will try to find all 

matches for the variables that result in truth

Lists in Prolog: member

member(X, [X|_]). 
member(X, [_|Tail]) :- member(X, Tail).

The first rule says:
• If X is the head of the list, then X is a member of the list

The second rule says:
• If X is a member of the tail of the list, then X is a member 

of the list

?- member(X, [1, 2]). 
X = 1 ; 
X = 2.
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• The built-in append predicate relates three lists:

Lists in Prolog: append

?- append([1], [2], L). 
L = [1, 2].

?- append(A, B, [1, 2, 3]). 
A = [], 
B = [1, 2, 3] ; 
A = [1], 
B = [2, 3] ; 
A = [1, 2], 
B = [3] ; 
A = [1, 2, 3], 
B = [] ; 
false.

append([], Ys, Ys). 
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
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• In Scheme, we could describe how to merge the contents 
of two lists like so:

Expressing the merge process

(define (merge x y) 
  (cond [(null? x) y] 
        [(null? y) x] 
        [else (let ([a (car x)] 
                    [b (car y)]) 
                (if (< a b) 
                    (cons a (merge (cdr x) y)) 
                    (cons b (merge x (cdr y)))))]))

> (merge '(0 2 4 6 8) '(1 3 5 7 9)) 
'(0 1 2 3 4 5 6 7 8 9)



12

Let’s look into the logic of the program:

But what is merge, really?

(cond [(null? x) y] 
      [(null? y) x] …

• for all y: '() and y merge to y
• for all x: x and '() merge to x

(let ([a (car x)] [b (car y)]) 
  (if (< a b) 
      (cons a (merge (cdr x) y)) …

• if (cdr x) and y merge to Z 
and a < (car y), then 
(cons a (cdr x)) and y merge to (cons a Z).
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• [3, 6, 9] and [4, 8] merge to What (L)?

Lists in Prolog: merge
?- merge([3, 6, 9], [4, 8], L). 
L = [3, 4, 6, 8, 9].

• [1, 3, 5] and What merge to [1, 2, 3, 4, 5]?
?- merge([1, 3, 5], L, [1, 2, 3, 4, 5]). 
L = [2, 4].

• What and WhatElse merge to [1, 2, 3, 4, 5, 6]?
?- merge(What, WhatElse, [1, 2, 3, 4, 5, 6]). 
This has 26 = 64 answers, not just one!

• Do [1, 3] and [2, 7] merge to [1, 2, 3, 7]?
?- merge([1, 3], [2, 7], [1, 2, 3, 7]). 
true.
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• Need to be careful about forming infinite loops
• Excels in database information retrieval; e.g. query systems
• Excels in domain-specific tasks:

- Yacc is a declarative language: “here is a grammar for a 
language” not “here is a parsing procedure.” 

- Bddbddb uses Datalog to make queries to Java bytecodes: 
“does this field point to values returned by this method?”

Weaknesses and strengths
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• Matches any three-element list that begins with an a and 
ends with a c:
- [a, X, c] 

• Matches any three-element list that begins with job, a 
second element of anything, and the third is a list of two 
elements that begins with computer:
- [job, X, [computer, Y]] 

• Matches any three-element list that begins with an a and 
whose second and third element can be anything as long 
as they are the same as each other:
- [a, X, X]

Pattern matching examples
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• We can keep track of variable assignments (in order to 
maintain consistency) by using frames.

• Match takes in: a pattern, a datum, and a frame.

Pattern matching algorithm

(match (?x ?y ?y ?x) (a b b a) frame)  frame: x = a 
result: ?y = b

(match pattern-with-question-marks   datum   frame) 

(match (?x ?y ?y ?x) (a b b a) frame)  frame: y = a 
result: fail
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Pattern matching algorithm
(define (pattern-match pat dat frame) 
  (cond [(eq? frame 'failed) 'failed] 
        [(equal? pat dat) frame] 
        [(var? pat) (extend-if-consistent pat dat frame)] 
        [(and (pair? pat) (pair? dat)) 
         (pattern-match (cdr pat) 
                        (cdr dat) 
                        (pattern-match (car pat) 
                                       (car dat) 
                                       frame))] 
        [else 'failed])) 

(define (extend-if-consistent var dat frame) 
  (let ([binding (binding-in-frame var frame)]) 
    (if binding 
        (pattern-match (binding-value binding) dat frame) 
        (extend var dat frame)))) 

(define (var? exp) 
  (tagged-list? exp '?))
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• Unification is a generalization of pattern matching, where 
the datum can have variables too.

Unification

[X, a, Y] = [Y, Z, a] 
X = a,
Y = a,
Z = a.

[X, X] = [[a, Y, c], [a, b, Z]] 
X = [a, b, c],
Y = b,
Z = c.

[X, a] = [[b, Y], Z] 
X = [b, Y],
Z = a.

[X, Y, a] = [X, b, Y] 
fail
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Unification algorithm
(define (pattern-match p1 p2 frame) 
  (cond [(eq? frame 'failed) 'failed] 
        [(equal? p1 p2) frame] 
        [(var? p1) (extend-if-possible p1 p2 frame)] 
        [(var? p2) (extend-if-possible p2 p1 frame)] 
        [(and (pair? p1) (pair? p2)) 
         (unify-match (cdr p1) (cdr p2) 
           (unify-match (car p1) (car p2) frame))] 
        [else 'failed])) 

(define (extend-if-possible var val frame) 
  (let ([binding (binding-in-frame var frame)]) 
    (cond [binding 
           (unify-match (binding-value binding) val frame)] 
      [(var? val) 
       (let ([binding (binding-in-frame val frame)]) 
         (if binding 
             (unify-match var (binding-value binding) frame) 
             (extend var val frame)))) 
      [(depends-on? val var frame) 'failed] 
      [else (extend var val frame)])
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• Developed in 1930’s by Alonzo Church and his students
• Studied in logic and computer science
• Church Thesis: “Effectively calculable functions from positive 

integers to positive integers are just those definable in the 
lambda calculus.”

• Alan Turing around the same time developed Turing Machines, 
shown to be equivalent to lambda calculus.

The Lambda Calculus
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• The only values are functions that take a single argument
• Normal order semantics

Expression → Id
Expression → ( lambda Id . Expression )
Expression → ( Expression Expression )

• We’ll abbreviate lambda as λ.
• We sometimes omit the parenthesis, in which case:

- Application associates to the left:  
x y means (x y) 
x y z means ((x y) z) 

- Abstraction extends to the right, as far as possible:  
λx.x λy.x y means λx.(x (λy.x y) 
λx.x λy.x y z means λx.(x (λy.((x y) z)))

The Lambda Calculus
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• Let’s define:
1. The identity function: 

 

2. A function that, given an argument y, discards it, and returns 
the identity function: 
 

3. A function that, given a function f, invokes it on the identity 
function:

The identity function
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• To define meaningful cons, +, * operations we’ll need to 
simulate multiple arguments.

• Idea: To compute a + b, pass a to a function ⊕ that returns a 
function that, when applied to b, returns a + b.
- That is: (+ a b) = ((⊕ a) b) 
- What does (⊕ a) return? A function that adds a to its argument! 
- E.g., (⊕ 1) is the “increment by 1” function; also known as the 
successor function, or succ

Simulating multiple arguments
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• This simulating-multiple-arguments technique is called 
currying, named after Haskell Curry.

• Let’s use currying to define cons: 
 
 

• The conspiracy!

Currying

cons = (λa. (λb. 
          (λselector. ((selector a) b)))) 
     = λa. λb. λselector. (selector a b) 

car = λp.(p (λa. λb. a)) 

cdr = λp.(p (λa. λb. b))
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• Key Idea: We want to encode the behavior of values.
• E.g., to define Booleans:

- Q: “What can we do with a Boolean?” 
- A: “Make a binary choice” 
- Q: “How can you view this as a function?” 
- A: “A Boolean is a function that takes two choices, returns one”

Make your own Boolean

true  = λx. λy. x 
false = λx. λy. y

true a b → a 
false a b → b
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• We don’t have to let the “low-level implementation” of Booleans 
to be exposed to everyone (e.g., everyone knows which of the 
true and false alternatives is first).

• Instead, wrap this detail inside of “if,” which acts like the 
Scheme if because λ-calculus has normal order evaluation:

Complete the conspiracy

true = λx. λy. x 
false = λx. λy. y 
if = λp. λthen. λelse. (p then else)
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• Let’s define:
1. Not: Takes in a single argument b, assumed to be a Boolean, 

and returns the negation of b: 
 

2. Or: Takes in two Booleans, b and c, and returns true if b or c 
are true: 
 

3. And: Takes in two Booleans, b and c, and returns true if b and 
c are true:

Boolean logic
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• Q: “What can we do with a natural number?”
• A: “Iterate a number of times over some function”
• So, a number n can be a function that takes in a function, call it 

s, and applies that function to a base value, call it z, n times.
• E.g.:

Church numerals

0 = λs. λz. z             /* s applied three times */  
1 = λs. λz. (s z)         /* s applied once */ 
2 = λs. λz. (s (s z))     /* s applied twice */ 
3 = λs. λz. (s (s (s z))) /* s applied three times */
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• Numbers are functions that make a promise: “If you give me 
any zero function z and any successor function s, then I’ll apply 
s to z the number of times as the number that I represent.”

• Successor, given n, returns n+1:

• “Let’s apply s to z n times, and then apply s once more.”

Church numerals

succ = λn. (λs. λz. (s (n s z)))
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• Apply s to z, n times
• Then, apply s to that, m times
• Thus, we could let succ = (plus 1)

• Apply “something” to zero, m times.

• Now, (expt n m) = nm

Addition and multiplication
plus = λn. λm.(λs. λz. (m s (n s z))) 
plus = λn. λm.(n succ m)

mult = λn. λm.(m                 0))

expt = λn. λm.



Subtraction
• Defined in terms of a predecessor function. 
– pred(n) = n – 1 if n > 0 
– pred(n) = 0  if n = 0 

• We won’t worry about negative numbers, 
instead, n – m = 0 if m ≥ n.

subtract = λn. λm. 
 (m pred n)



Predecessor

A B

0 0

1 0

2 1

3 2

4 3

nextpair = λp. 
 cons (succ (car p)) (car p) 

pred = λn. 
 cdr (n nextpair (cons zero zero))

• This one is much harder, and stumped logicians for a 
while. 

• Initialize a, b to 0. 
• Repeatedly transform: 
–a ! a + 1 

–b ! a 

• After the transform is applied n times, b is the 
predecessor of n! 

• We don’t even need to loop:


