Lecture 9 — August 31, 201

* Today:
- Declarative Programming
- Unification
- Lambda calculus
* Readings:
- Finish SICP 4.4
- http://docs.racket-lang.org/datalog/datalog.html

CSE130, Summer Session 11

O

Logic Programming

* Different way to program: No procedures!
* Math: Declarative Knowledge: What |s
- The definition of a square root:
Vx is the y such that y? = x and y > 0

* CS: Imperative Knowledge: How To
- The algorithm to compute a square root:

(define (sqrt x)
(let loop ([guess 1.0])
(if (< (abs (- (square guess) x)) 0.00001)
guess
(Lloop (average guess (/ x guess))))))

(define (square n) (* n n))
(define (average a b) (/ (+ a b) 2))

Logic Programming

* The relation between Celsius and Fahrenheit:
F—-32=(9/5)-C
* This formula provides enough information to let us know
how to:
- Convert from Fahrenheit to Celsius; and
- Convert from Celsius to Fahrenheit

* No explicit input or output:

- One piece of declarative knowledge can be used as the basis of
several kinds of how-to knowledge

- E.g., In procedural programming, the sqrt procedure maps
inputs to outputs: “What is the square root of 2897” but you can'’t
use it to ask “What is 17 the square root of?”

Facts and Queries

* Idea: Why not program in declarative terms instead?
- Specify facts (what is true) an let the system figure out the “how to” part

* For example, queries over a Prolog/Datalog database:

% Facts:

son_of(adam, abel).
son_of (adam, cain).
son_of(cain, enoch).
son_of(enoch, 1irad).

% Prolog/Datalog Queries:

?- son_of(adam, Who). % Who is Adam the father of?
Who = abel

Who = cain

?- son_of(Who, cain). % Who i1s Cain’s father?

Who = adam

» Variables start with Uppercase letters.
* Atoms start with lowercase letters (an atom is like a 'symbol in Lisp)

Prolog/Datalog Rules

* Instead of stating all facts directly, we can infer other facts
from logical rules:

% Facts

son_of(adam, abel).
son_of(adam, cain).
son_of(cain, enoch).
son_of(enoch, 1irad).

here, X, Y, and Z

% Rules are the variables
grandson_of (X, Z) :- son_of(X, Y), son_of(Y, Z).

* Now we can ask:

N\

?- grandson_of(adam, Who). % Who is the grandson of Adam?
Who = enoch

N\

?- grandson_of(Who, 1irad). % Who is Irad the grandson of?
Who = cain

* Read the “:-" like a backwards implication and the commas as
logical conjunction: (x sonof y A y sonof x) = x grandsonof y

Prolog/Datalog Rules

* We can specify a general relation implied from the facts
and the rules:

% Facts
son_of(adam, abel). son_of(adam, cain).
son_of(cain, enoch). son_of(enoch, 1irad).

% Rules

grandson_of (X, Z) :- son_of(X, Y), son_of(Y, Z).
relation(X, Y, son) :- son_of(X, Y).

relation(X, Y, father) :- son_of(Y, X).
relation(X, Y, grandson) :- grandson_of(X, Y).
relation(X, Y, grandfather) :- grandson_of(Y, X).

?- relation(enoch, cain, R). % What 1s Enoch and Cain’s
R = father % relation?

?- relation(_, X, grandfather). % Who are all of the

X = adam % grandfathers, based on

X = cain % just this information?

* The “_" means “don’t care”

Lists in Prolog: member

- Prolog (but not Datalog), supports lists: The built-in member
predicate can be used to make queries:

?- member(a, [a, b, c, d]).
true

?- member(z, [a, b, c, d]).
false

?- member (X, [a, b, c, d]).
X a
X =0>b
X C
X =d

?- member (e, [a, b, X, d]).
X e

Lists in Prolog: Cons

* In Prolog, a cons cell is specified using [Head | Tail]
* An empty list is specified with []

- The [Head|Tail] notation doesn’t necessarily create a
cons cell, it can be used to retrieve the head and tail

?- A=[1, 2], A=[H|R].

A=1T[1, 2], A is bound first: forces H and R to match
H=1

R = [2]

?- H=1, R=[2], A=[H]|R].

A= [1, 2], |

H=1, H and R are bound first: forces A to match
R = [2]

?- X=[4, 8, 16], [XCar|XCdr]=X, [XCadr|_]=XCdr.
X = [4, 8, 16],

XCadr = 8,
XCar = 4,
XCdr = [8, 16]

Lists in Prolog: member

 Rules state what is true

* When given variables, Prolog’s solver will try to find all
matches for the variables that result in truth

member (X, [X]|_1).
member (X, [_|Tail]) :- member (X, Tail).

The first rule says:
 |f X is the head of the list, then X is a member of the list

The second rule says:

« If X is a member of the tail of the list, then X is a member
of the list

member (X, [1, 2]).
13

?-
X
X 2.

Lists In Prolog: append

« The built-in append predicate relates three lists:

7= append([l], [2], L)-

L = [1, 2].

?- append(A, B, [1, 2, 3]).
A=11,

B =[1, 2, 3] ;
A = [1],

B = [2, 3] ;
A=1[1, 2],

B = [3] ;

A =11, 2, 3],
B =1[];
false.

append([], Ys, Ys).
append([X|Xs], Ys, [X]|Zs])

:— append(Xs, Ys, Zs).

10

EXpressing the merge process

* In Scheme, we could describe how to merge the contents
of two lists like so:

(define (merge x y)
(cond [(null? x) y]

[(null? y) x]

[else (let ([a (car x)]
[b (car y)])

(if (< a b)

(cons a (merge (cdr x) y))
(cons b (merge x (cdr y)))))1))

> (merge '(0 2 46 8) '(135729))

'(0 12345678 09)

11

But what is merge, really”?

Let’s look into the logic of the program:

(cond [(null? x) y]
[(null? y) x] ...

« forally: '() andy mergetoy
 forall x: x and ' () merge to x

(let ([a (car x)] [b (car y)])
(if (< a b)
(cons a (merge (cdr x) y)) ...

* if (cdr x) andy merge to Z
anda < (car y), then
(cons a (cdr x)) andy mergeto (cons a Z).

12

Lists In Prolog: merge

- [3, 6, 9] and [4, 8] merge to What (L)?

?- merge([3, 6, 9], [4, 8], L).
L = [33 4, 6, 8, 9].

- [1, 3, 5] andWhat mergeto [1, 2, 3, 4, 5]7

?- merge([1, 3, 5], L, [1, 2, 3, 4, 5]).
L = [2, 4].

 What and WhatElse mergeto [1, 2, 3, 4, 5, 6]7

?- merge(What, WhatElse, [1, 2, 3, 4, 5, 6]).
This has 26 = 64 answers, not just one!

- Do[1, 3]and [2, 7] mergeto [1, 2, 3, T7]7

2= merge([la 3]3 [2, 7]’ [13 2’ 33 7])-
true.

13

Weaknesses and strengths

* Need to be careful about forming infinite loops
* Excels in database information retrieval; e.g. query systems

* Excels in domain-specific tasks:

- Yacc is a declarative language: “here is a grammar for a
language” not “here is a parsing procedure.”

- Bddbddb uses Datalog to make queries to Java bytecodes:
“does this field point to values returned by this method?”

14

Pattern matching examples

« Matches any three-element list that begins with an a and
ends with a c:

- [a, X, c]
« Matches any three-element list that begins with job, a

second element of anything, and the third is a list of two
elements that begins with computer:

- [job, X, [computer, Y]]
« Matches any three-element list that begins with an a and

whose second and third element can be anything as long
as they are the same as each other:

- [a, X, X]

15

Pattern matching algorithm

We can keep track of variable assignments (in order to
maintain consistency) by using frames.

(match (?x ?y ?y ?x) (a b b a) frame) frame:x=a
result: 2y =b

(match (?x ?y ?y ?x) (a b b a) frame) frame:y=a
result: fail

Match takes in: a pattern, a datum, and a frame.

(match pattern-with-question-marks datum frame)

16

Pattern matching algorithm

(define (pattern-match pat dat frame)
(cond [(eq? frame 'failed) 'failed]
[(equal? pat dat) frame]
[(var? pat) (extend-if-consistent pat dat frame)]
[(and (pair? pat) (pair? dat))
(pattern—-match (cdr pat)

(cdr dat)

(pattern—-match (car pat)
(car dat)
frame))]

[else 'failed]))

(define (extend-if-consistent var dat frame)
(Llet ([binding (binding-in-frame var frame)])
(if binding
(pattern-match (binding-value binding) dat frame)
(extend var dat frame))))

(define (var? exp)
(tagged-1list? exp '?))

17

Unitication

 Unification is a generalization of pattern matching, where
the datum can have variables too.

[X, a, Y] = [Y, Z, a]

N < X
o
AV

[X, X] = [[a, ¥, c], [a, b, Z]]
X =]a, b, c],

Y =b,

Z =cC.

[X, a] = [[b, Y]) Z]
X =1b, Y],
Z = a.

[X, Y, a] = [X, b, Y]
fail

18

Unitication algorithm

(define (pattern—-match pl p2 frame)

(cond [(eq? frame 'failed) 'failed]
[(equal? pl p2) frame]
[(var? pl) (extend-if-possible pl p2 frame)]
[(var? p2) (extend-if-possible p2 pl frame)]
[(and (pair? pl) (pair? p2))
(unify-match (cdr pl) (cdr p2)

(unify-match (car pl) (car p2) frame))]

[else 'failed]))

(define (extend-if-possible var val frame)
(let ([binding (binding-in-frame var frame)])
(cond [binding
(unify-match (binding-value binding) val frame)]
[(var? val)
(let ([binding (binding-in-frame val frame)])
(if binding

(unify-match var (binding-value binding) frame)
(extend var val frame))))

[(depends-on? val var frame) 'failed]

[else (extend var val frame)])

19

The Lambda Calculus

Developed in 1930’s by Alonzo Church and his students
Studied in logic and computer science

Church Thesis: “Effectively calculable functions from positive
iIntegers to positive integers are just those definable in the
lambda calculus.”

Alan Turing around the same time developed Turing Machines,
shown to be equivalent to lambda calculus.

20

The Lambda Calculus

The only values are functions that take a single argument
Normal order semantics

Expression — Id

Expression = (Lambda Id . Expression)

Expression = (Expression Expression)
We’'ll abbreviate Tambda as A.

We sometimes omit the parenthesis, in which case:

- Application associates to the left:
X y means (x y)
Xy zmeans ((x y) z)

- Abstraction extends to the right, as far as possible:
AX.X Ay.x ymeansAx.(x (Ay.x y)
AX.X Ay.x y zmeansAx.(x (Ay.((x y) z)))

21

The 1dentity function

* Let’s define:
1. The 1dentity function:

2. A function that, given an argument y, discards it, and returns
the 1dent1ty function:

3. Afunction that, given a function f, invokes it on the identity
function:

22

Simulating multiple arguments

» To define meaningful cons, +, * operations we’ll need to
simulate multiple arguments.

 Idea: To compute a + b, pass a to a function @ that returns a
function that, when applied to b, returns a + b.

- Thatis: (+ a b) = ((® a) b)
- What does (@ a) return? A function that adds a to its argument!

- E.g.,, (@ 1) isthe “increment by 1” function; also known as the
successor function, or succ

23

Currying

* This simulating-multiple-arguments technique is called
currying, named after Haskell Curry.

 Let’s use currying to define cons:

(Aa. (Ab.
(Aselector. ((selector a) b))))
Aa. Ab. Aselector. (selector a b)

cons

car = Ap.(p (Aa. Ab. a))

cdr = Ap.(p (Aa. Ab. b))

* The conspiracy!

24

Make your own Boolean

* Key Idea: We want to encode the behavior of values.

* E.g., to define Booleans:
- Q: “What can we do with a Boolean?”
- A: "Make a binary choice”
- Q: “How can you view this as a function?”
- A: “A Boolean is a function that takes two choices, returns one”

true = AX. Ay. X
false = Ax. Ay. y

true a b = a
false a b & b

25

Complete the conspiracy

* We don’t have to let the “low-level implementation” of Booleans
to be exposed to everyone (e.g., everyone knows which of the
true and false alternatives is first).

* Instead, wrap this detail inside of “if,” which acts like the
Scheme 1 f because A-calculus has normal order evaluation:

true = Ax. Ay. X
false = Ax. Ay. y
if = Ap. Athen. Aelse. (p then else)

Boolean logic

* Let’s define:

1. Not: Takes in a single argument b, assumed to be a Boolean,
and returns the negation of b:

2. Or: Takes in two Booleans, b and ¢, and returns true if b or
are true:

3. And: Takes in two Booleans, b and ¢, and returns true if b and
c are true:

27

Church numerals

Q: “What can we do with a natural number?”

A: “lterate a number of times over some function”

So, a number n can be a function that takes in a function, call it
s, and applies that function to a base value, call it z, n times.

* E.g.:

O = As. Az. zZ /* s applied three times */
1 = As. Az. (s Zz) /* s applied once */

2 = As. Az. (s (s 2z)) /* s applied twice */

3 =As. Az. (s (s (s z))) /*sapplied three times */

28

Church numerals

* Numbers are functions that make a promise: “If you give me
any zero function z and any successor function s, then I'll apply
s to z the number of times as the number that | represent.”

* Successor, given n, returns n+1:

succ = An. (As. Az. (s (nh s 2)))

* “Let’s apply s to z n times, and then apply s once more.”

29

Addition and multiplication

plus
plus

Apply s to z, n times

An. Am.(As. Az. (ms (n s z)))
An. Am.(n succ m)

Then, apply s to that, m times
Thus, we could let succ = (plus 1)

Apply “something” to zero, m times.

mult = An. Am. (m 0))

Now, (expt n m) =n"

expt = An. Anm.

30

Subtraction

* Defined in terms of a predecessor function.
—pred(n) =n-1 ifn>0
—pred(n) =0 ifn=0

* We won’t worry about negative numbers,
instead, n - m =0 if m > n.

subtract = An. Am.
(m pred n)

Predecessor

This one is much harder, and stumped logicians for a
while.

Initialize a, b to O. 2 E
Repeatedly transform: 1 0
—a<a+1 z L
—b €& a 3 2

4 3

After the transform is applied » times, b is the
predecessor of »!

We don’t even need to loop:

nextpair = Ap.
cons (succ (car p)) (car p)

pred = An.
cdr (n nextpair (cons zero zero))

