
CSE 130 — Summer 2015 Final Examination Friday, September 4

Instructions: Write your solutions to the following problems in your blue book. Be
sure to write your name and student ID number on the front. Have your photo
identification ready when you hand in your blue book.

Read each problem carefully and recheck your work. Clearly indicate your
answer. If you provide what looks like multiple answers for the same problem then
no points will be awarded (even if all answers provided are correct).

All work must be your own and you must work independently.

Q1 — Implement a Scheme Function [10 points]
Define a Scheme procedure named last-pair that returns the list that contains only the
last element of a given (non-empty) list. For example:

> (last-pair (list 23 72 149 34))
'(34)

Q2 — Data Examples [10 points]
Ben Bitdiddle decides to write a procedure to count the number of pairs in any list structure.
“It’s easy,” he reasons. “The number of pairs in any structure is the number in the car plus the
number in the cdr plus one more to count the current pair.”

So, Ben writes the following procedure:

(define (count-pairs x)
 (if (not (pair? x))
 0
 (+ (count-pairs (car x))
 (count-pairs (cdr x))
 1)))

Show that this procedure is not correct. In particular: Draw box-and-pointer diagrams
representing list structures made up of exactly three pairs for which Ben’s
procedure would:

A.) Return 3

B.) Return 4

C.) Return 7

D.) Never return at all  

Page � of �1 5

CSE 130 — Summer 2015 Final Examination Friday, September 4

Q3 — Code in the Blank [10 points]
For this problem and the next, use the following definition of fold-right:

(define (fold-right op init lst)
 (if (null? lst)
 init
 (op (car lst) (fold-right op init (cdr lst)))))

Evaluating a polynomial in x at a given value of x can be formulated as an accumulation. We
evaluate the polynomial

 anxn + an–1xn–1+ …⋯ + a1x + a0

using a well-known algorithm called Horner’s rule, which structures the computation as

 (… (anx + an–1)x + …⋯ + a1)x + a0.

In other words, we start with an, multiply by x, add an–1, multiply by x, and so on, until we reach
a0. Complete the MISSING-PART of the following template to produce a procedure
that evaluates a polynomial using Horner’s rule

(define (horner-eval x coefficient-sequence)
 (fold-right (lambda (this-coeff higher-terms)
 MISSING-PART)
 0
 coefficient-sequence))

Assume that the coefficients of the polynomial are arranged in a sequence, from a0 through an.
For example, to compute 1 + 3x + 5x3 + x5 at x=2:

> (horner-eval 2 (list 1 3 0 5 0 1))
79

Q4 — Code in the Blank [10 points]
Using the definition of fold-right from Q?1: Complete the MISSING-PART to compute the
basic length procedure on a list

(define (length sequence)
 (fold-right MISSING-PART 0 sequence))

Page � of �2 5

CSE 130 — Summer 2015 Final Examination Friday, September 4

Q5 — Lambda Calculus [10 points]
Recall from the lambda calculus lecture that Booleans, natural numbers, and cons cells can all
be represented in terms of single-argument functions!

 true = λx. λy. x
 false = λx. λy. y
 if = λp. λthn. λels. (p thn els)
 cons = λa. λb. λs. (s a b)
 car = λp. (p (λa. λb. a))
 cdr = λp. (p (λa. λb. b))
 0 = λs. λz. z
 1 = λs. λz. (s z)
 succ = λn. (λs. λz. (s (n s z)))
 plus = λn. λm. (n succ m)
 iszero = λn. n (λi. false) true

Even though cons cells are available, full list structures are not supported because the empty list
value and the null? predicate haven’t been defined. However, supporting these operations
requires different definitions for cons, car, and cdr.

Write new definitions for cons, car, and cdr that support lists (name them list-cons,
list-car, list-cdr) in addition to defining two new values: list-null? and the-empty-
list.

You may use any of the existing definitions above if you wish, and you may use either Scheme or
lambda calculus syntax in your answer.

A.) Write a definition for list-cons

B.) Write a definition for list-car

C.) Write a definition for list-cdr

D.) Write a definition for list-null?

E.) Write a definition for the-empty-list

Page � of �3 5

CSE 130 — Summer 2015 Final Examination Friday, September 4

Q6 — Continuation Passing Style [10 points]
Recall that, to rewrite our programs in continuation-passing style, we had to provide alternative
definitions for some of the primitives.

A.) Using the definition for +, define a continuation-passing style +/cb function
that takes in two numbers and sends their sum to the given callback. For example, it
would begin as: (define (+/cb n m cb) …

B.) Do the same for a two-argument version of *, to make */cb

C.) Do the same for cons, to make cons/cb

D.) Do the same for the abs function to make abs/cb

Q7 — Ambiguous Grammars [10 points]
Consider the familiar if-then-else construct used in many languages:

S ::= if E then S else S
S ::= if E then S
S ::= Identifier := Number ;
E ::= Identifier == Number

Identifier ::= a | b | c
Number ::= 0 | 1 | 2

Where S stands for Statement, E stands for Expression, and the tokens are: ‘if’, ‘then’, ‘else’,
‘:=’, ‘;’, ‘==’, ‘a’, ‘b’, ‘c’, ‘0’, ‘1’, ‘2’.

The above grammar is considered an ambiguous grammar because it’s possible for the same
sequence of tokens to lead to two different parse trees.

By drawing parse trees, show how the sequence of tokens:

 if a == 0 then if b == 1 then c := 1; else c:= 2;

can lead to two different parse trees

Page � of �4 5

CSE 130 — Summer 2015 Final Examination Friday, September 4

Q8 — Higher Order Functions [10 points]
Implement a function, named repeated, that takes in a procedure op and a non-negative
number n, and returns a procedure that, once given a value, applies op to that value n-times.

For example, repeated could be used to define multiplication:

(define (mult n m)
 (let ([add-n (lambda (x) (+ n x))])
 ((repeated add-n m) 0)))

where

> (mult 5 7)
35

Implement repeated, start it with (define (repeated op n)…

Q9 — Typing [10 points]
Write in the most general terms the type of repeated (from Q8)

QX — List Processing [10 points]
Implement a function that splits and flattens, named splat, that takes a list of
symbols and numbers (with the potential for lists to be arbitrarily nested) and returns a pair of
flattened lists, one consisting only of the symbols and the other only of the numbers.

For example,

> (splat '(0 () (a d) (h o c) 1 (l o (c (o))) 3 1 4))
'((a d h o c l o c o) (0 1 3 1 4))

Page � of �5 5

