
CSE 130 — Summer 2015 Written Assessment #2 Due: Wednesday, August 26

Last Name: (as on your ID)_________________________________

First Name: _________________________________

ID: Score:__

Instructions: Write your solutions to the following problems in the space provided. Read each
problem carefully and recheck your work. All work must be your own and you must work
independently.

Q1 — REWRITING [5 POINTS]
The following procedure, power-close-to, finds the smallest power of its first argument that is
greater than its second argument.

(define (power-close-to b n)
 (power-iter b n 1))

(define (power-iter b n e)
 (if (> (expt b e) n)
 e
 (power-iter b n (+ e 1))))

Embed the definition of power-iter inside power-close-to using the “named let” form. Take
advantage of lexical scoping to remove unnecessary parameters from the embedded power-iter,
and explain why you could remove those parameters.

� of �1 4

/ 25

CSE 130 — Summer 2015 Written Assessment #2 Due: Wednesday, August 26

Q2 — BOX-AND-POINTERS [5 POINTS]
Suppose we evaluate the expression

(list (cons 1 2) (list 3 4 '()))

Draw the corresponding box-and-pointer structure for the cons-cells generated.

Q3 — BOX-AND-POINTERS [5 POINTS]
Now suppose we evaluate the expressions, using the mutable variant of cons (mcons):

(define cell (mcons 1 3))
(set-mcar! cell (mcdr cell))
(set-mcdr! cell cell)

Draw the corresponding box-and-pointer structure for the (mutable) cons-cells generated.

� of �2 4

CSE 130 — Summer 2015 Written Assessment #2 Due: Wednesday, August 26

Q4 — TAIL CALLS [5 POINTS]
Examine the five procedures below and mark if the algorithm is: Recursive, Iterative (i.e., all
recursive calls are tail calls), or Partially Iterative (i.e., some recursive calls are tail calls, but not all).

A. factorial: Recursive Iterative Partially Iterative
(define (factorial n)
 (let fact ((i n) (a 1))
 (if (= i 0)
 a
 (fact (- i 1) (* a i)))))

B. factor: Recursive Iterative Partially Iterative
(define (factor n)
 (let f ((n n) (i 2))
 (cond ((>= i n) (list n))
 ((integer? (/ n i)) (cons i (f (/ n i) i)))
 (else (f n (+ i 1))))))

C. list?: Recursive Iterative Partially Iterative
(define (list? x)
 (let race ((h x) (t x))
 (if (pair? h)
 (let ((h (cdr h)))
 (if (pair? h)
 (and (not (eq? h t))
 (race (cdr h) (cdr t)))
 (null? h)))
 (null? h))))

D. even?: Recursive Iterative Partially Iterative
E. odd?: Recursive Iterative Partially Iterative

(define (even? x)
 (or (= x 0)
 (odd? (- x 1))))

(define (odd? x)
 (and (not (= x 0))
 (even? (- x 1))))

� of �3 4

CSE 130 — Summer 2015 Written Assessment #2 Due: Wednesday, August 26

Q5 — TYPING [5 POINTS]
For each of the following expressions, what type must f have in order for the evaluation of the
expression to not cause an error? For each expression, give a definition of f such that evaluating the
expression will not cause an error, and say what the expression’s value will be, given your definition.

A. f

B. (f)

C. (f 3)

D. ((f))

E. (((f)) 3)

� of �4 4

