
CSE 130 — Summer 2015 Written Assessment #3 Due: Monday, August 31

Last Name: (as on your ID)__

First Name: __

ID: Score: /25___

Instructions: Write your solutions to the following problems in the space provided. Read
each problem carefully and recheck your work. All work must be your own and you must
work independently.

Q1 — Side-effects and Argument Evaluation Order [5 points]
Scheme leaves unspecified the order in which the subexpressions should be evaluated
(e.g., left-to-right or right-to-left). Because Scheme has assignment, the order in which
the arguments are evaluated matters, which could potentially lead to different results.

Define a simple procedure f such that evaluating

(+ (f 0) (f 1))

will return 0 if the arguments to + are evaluated from left-to-right but will return 1 if
the arguments are evaluated from right-to-left.

Page � of �1 5

CSE 130 — Summer 2015 Written Assessment #3 Due: Monday, August 31

Q2 — Typing [5 points]
Write the type of this mystery function in the most general terms:

(define (mystery f g i)
 (let ([r (g (+ i 1))])
 (r f)))

If a binding could be of any type, use generic type names like A, B, C, …. If a binding
must be: a number, use ‘Number’; a string, use ‘String’; a Boolean, use ‘Boolean.’ You
must use ‘→’ for function types. Use parentheses for grouping.

For example, A → (B → Number) is the type of a function that takes in an argument of
type A and returns a function that takes in an argument of type B and returns a number.

Page � of �2 5

CSE 130 — Summer 2015 Written Assessment #3 Due: Monday, August 31

Q3 — Java Tricks [5 points]
Consider the following Java program fragment:

public class BooleanFactory {
 public static final MyBoolean TRUE = new MyTrue();
 public static final MyBoolean FALSE = new MyFalse();

 /* Returns TRUE if the given Boolean is true; returns FALSE otherwise. */
 public static MyBoolean make(boolean b) {
 if (b) {
 return TRUE;
 } else {
 return FALSE;
 }
 /* Note: This is equivalent to using the conditional: return (b) ? TRUE : FALSE; */
 }
}

Provide an implementation of the BooleanFactory.make method (in Java) that
behaves the same as the implementation above, without using if, switch, or the
conditional (?:) operator. You may use arrays, lists, or maps if you wish. 

Page � of �3 5

CSE 130 — Summer 2015 Written Assessment #3 Due: Monday, August 31

Q4 — Recursion and Higher-Order Functions [5 points]
The procedure square-list takes a list of numbers as arguments and returns a list of
the squares of those numbers. For example,

(square-list (list 1 2 3 4))

produces

(1 4 9 16).

Below are two different, but incomplete, definitions of square-list. Complete both of
them by providing the program text for the missing expressions A, B, C, D (marked with
question marks on both sides).

A.
(define (square-list items)
 (if (null? items)
 '()
 (cons ?A? ?B?)))

B.
(define (square-list items)
 (map ?C? ?D?))

Page � of �4 5

CSE 130 — Summer 2015 Written Assessment #3 Due: Monday, August 31

Q5 — Continuation Passing Style [5 points]
Convert the hypotenuse-length function to continuation passing style.

You may assume that the callback-receiving variants of +, *, f, g, and sqrt have already
been defined as +/cb, */cb, f/cb, g/cb, and sqrt/cb. Assume a left-to-right order of
evaluation for sub-expressions.

(define (hypotenuse-length x y)
 (sqrt (+ (* x x) (* y y))))

⇒
(define (hypotenuse-length/cb x y cb)

)
To help you, here is an example of a conversion to continuation passing style for the
function h:

(define (h u v)
 (+ (f u) (g v)))

⇒

(define (h/cb u v cb)
 (f/cb u
 (lambda (f-of-u)
 (g/cb v
 (lambda (g-of-v)
 (+/cb f-of-u g-of-v cb))))))

Page � of �5 5

