
CSE 130 — Summer 2015 Written Assessment #4 Due: Wednesday, September 2

Last Name:  (as on your ID)______________________________________________

First Name:  ______________________________________________

ID: Score: /25_____________________________________________________                         

Instructions: Write your solutions to the following problems in the space provided. 
Read each problem carefully and recheck your work. All work must be your own 
and you must work independently.

Q1 — Dotted Tails [5 points] 
Recall that Scheme will print cons cells in a list format unless the cdr is not a pair or the 
empty list (null). In the event the cdr is not a pair or null (for example, when it’s a 
number), then a “.” will be placed before the cdr’s print representation. 

Write what the Scheme interpreter prints for each of the following expressions: 

A.) (cons 1 2) 

B.) (cons 1 (cons 2 '())) 

C.) (cons 1 (cons 2 3)) 

D.) (cons 1 (list 2 3))  

Page �  of �1 5



CSE 130 — Summer 2015 Written Assessment #4 Due: Wednesday, September 2

Q2 — Typing [5 points] 
Specify the types of the following Scheme functions. You must: 

1. Write ‘List<T>’ to specify the type of a list with elements of type T. 

2. Write ‘(S,T) → U’ to specify the type of a function that takes two parameters (one S 
and one T), and returns a value of type of U. 

3. Write ‘T | U’ to specify the type of a value that could be either of type T or type U. For 
example, the cdr of a cons cell for a list of A elements has the type ‘List<A> | Null’. 

If “any” type can be allowed, use type variables like A, B, C, D, …. Be careful for when 
two such types need to be consistent. Use the types String, Number, and List, along with 
the function types and others. 

A.) append: 
(define (append x y) 
  (if (null? x) 
      y 
      (cons (car x) (append (cdr x) y)))) 

B.) even-fibs: 
(define (even-fibs n) 
  (let next ([k 0]) 
    (if (> k n) 
        '() 
        (let ([f (fib k)]) 
          (if (even? f) 
              (cons f (next (+ k 1))) 
              (next (+ k 1))))))) 

Assume: fib: Number → Number 

C.) average-damp: 
(define (average-damp f) 
  (lambda (x) 
    (average x (f x)))) 

Assume: average: Number, Number → Number 

Page �  of �2 5



CSE 130 — Summer 2015 Written Assessment #4 Due: Wednesday, September 2

Q3 — Conspiracy [5 points] 
Consider the following group of Scheme functions: The procedure make-triple takes 
in three arguments and returns a triple. A triple can have its first, second, and third 
elements accessed, respectively, by the first, second, and third functions. 

Thus, the following properties hold: 

 (first (make-triple a b c)) → a 
(second (make-triple a b c)) → b 
 (third (make-triple a b c)) → c 

Figure out how a triple is represented by looking at the already-completed second 
function. Then, complete the implementation of the remaining functions. 

A.)   (define (make-triple a b c) 

B.)   (define (first triple) 

[Given.] (define (second triple) 
    (triple (lambda (a b c) b))) 

C.)   (define (third triple) 

Page �  of �3 5



CSE 130 — Summer 2015 Written Assessment #4 Due: Wednesday, September 2

Q4 — Quoted Output [5 points] 
Write what the following expression evaluates to: 

((lambda (x) (list x (list (quote quote) x))) 
 (quote (lambda (x) (list x (list (quote quote) x))))) 

Please show the output with all valid (quote datum) special-form expressions in their 
(correct) abbreviated form: 'datum. 

Page �  of �4 5



CSE 130 — Summer 2015 Written Assessment #4 Due: Wednesday, September 2

Q5 — Unification [5 points] 
Show how the following pairs of patterns unify with each other or explain why they 
cannot be unified. Variables start with an uppercase letter (e.g., W, X, Y, Z), and atoms 
start with a lowercase letter (a, b, c, d, e, f…). 

If there is an assignment to all of the variables that is consistent with both patterns, then 
show the bindings in the most general terms possible. For example, the pattern [a|X] 
and the pattern [a, b, Y] unify, where X must be a list that starts with b and ends 
with whatever Y is. The bindings would be written as: X = [b, Y]. 

A.) [X, X] = [[a, Y, c], [a, b, Z]] 

B.) [X, Y, [Z, a, W]] = [X, [a, W, b], Y] 

 
 

C.) [X, a] = [[b, Y], Z] 

D.) [f, X, Y] = [f, [g, Y], X]

Page �  of �5 5


